85539 (612509), страница 5
Текст из файла (страница 5)
З формул (6) і (7) виводимо:
| (8) |
Користуючись формулою (8), можна приблизно обчислити друге власне значення . Відмітимо, що на практиці зважаючи на втрату точності при відніманні близьких чисел іноді вигідніше номер ітерації k для визначення
брати меншим, ніж номер ітерації т для визначення
, тобто доцільно вважати:
| (9) |
де k- найменше з чисел, при якому починає позначатися переважання над наступними власними значеннями. Формула (9), взагалі кажучи, дає грубі значення для
. Відмітимо, що якщо модулі всіх власних значень різні між собою, то за допомогою формул, аналогічних формулі (9), можна обчислити і решту власних значень даної матриці. Проте результати обчислень будуть ще менш надійні.
Що стосується власного вектора , те, як витікає з формули (6), можна покласти:
| (10) |
Є розповсюдження даного методу на випадок кратного кореня характеристичного рівняння.
Приклад. Визначити подальші власні значення і власні вектори матриці
Розв’язання. Для знаходження другого власного значення приймемо k = 8. Маємо:
|
|
|
45433 21141 6 201 | 202833 93906 27 342 | 905238 417987 121 248 |
Складаємо - різниці по формулі
де . Для кожного із стовпців приймається своє значення
а саме:
= 4,462;
= 4,456;
= 4,447 (таблиця 2).
Таблиця 2
Обчислення другого власного значення
|
|
|
|
|
|
202833 93906 27 342 | 202722 94204
| 111 – 298 – 234 | 905238 417987 121 248 | 905041 418445 121 590 | 197 – 458 – 342 |
Звідси одержуємо:
Отже, приблизно можна прийняти:
В якості другого власного вектора можна прийняти:
Нормуючи цей вектор, одержимо:
Оскільки матриця А — симетрична, то вектори і
повинні бути ортогональні між собою. Перевірка дає:
Звідси , що досить неточно.
Третє власне значення знаходимо по сліду матриці А:
Звідси
.
Власний вектор
можна обчислити з умов ортогональності:
Звідси
Або
Після нормування остаточно отримаємо:
-
приклади задач, що зводяться до відшукання власних значень та власних векторів матриці
Задача 1
Дослідимо тривісне напруження стану елемента тіла, представленого на малюнку. Матриця напруги для нього має вигляд
Якщо виходити з того, що руйнування станеться при максимальній напрузі, то необхідно знати величину найбільшого головного напруження яке відповідає найбільшому власному значенню матриці напруги. Для знаходження цієї напруги скористаємося одним методом ітерацій. Одержимо власне значення і такий власний вектор
Задача 2. [12, стор. 70]Для довільного тривимірного твердого тіла можна ввести три моменти інерції відносно трьох взаємно перпендикулярних осей і три змішані моменти інерції відносно трьох координатних площин. Відомо, що для несиметричного тіла при фіксованому початку координат існує єдина орієнтація координатних осей, при якій змішані моменти інерції обертаються в нуль. Такі осі називаються головними осями інерції, а відповідні моменти інерції - головними моментами інерції, серед яких є найбільший, найменший і такий, що має проміжне значення. Для матриці моментів інерції
знайти три головних моменти інерції.
Задача 3. [12, стор. 70]Баржа призначена для перевезення через озеро Ері зчепки з шести залізничних вагонів. Буксир тягне її за носову частину, як показано на малюнку. Значення мас вагонів і коефіцієнтів жорсткості сполучних елементів вказані під малюнком. Існує побоювання, що в зчепленні вагонів при хвилюванні на озері можуть виникнути резонансні продольні коливання. Обчислити шість власних частот даної механічної системи і порівняти їх з частотою хвилі, рівній 1 рад/с. Власні частоти пов'язані з власними значеннями динамічної матриці D співвідношенням
Динамічна матриця утворюється із матриць жорсткості [К] і мас [M]
.
Задача 4. [12, стор. 71] Консольний брус довжиною 10 м, що має згинну жорсткість і погону масу 10 кг/м, апроксимується двома точковими масами по 50 кг кожна, що розташовані в центрі та на вільному кінці бруса.
Потрібно знайти дві основні частоти коливань бруса. Це можна зробити, знаючи власні значення динамічної матриці
та маючи на увазі, що
.
— діагональна матриця, на діагоналі якої стоять маси точок;
— матриця згину, в якій елементи і-го рядка являють собою відхилення точки j під дією одиничної сили, що прикладена до точки і. Осьова сила відсутня. Деформаціями здвигу можна знехтувати.
Висновки
У першому розділі курсової роботи проаналізовано науково-методичну літературу з теми дослідження.
Вивчення даної теми ми почали з розкриття дуже важливого для нашого дослідження поняття "матриця".
Ми розглянули основні відомості про матриці та визначники, висвітлили означення власних значень та власних векторів матриць.
В другому розділі ми розглянули теоретичні основи таких методів:
-
метод А. М. Данілевського;
-
метод А. Н. Крилова;
-
метод Леверрьє;
-
метод невизначених коефіцієнтів;
-
метод скалярних добутків для знаходження першого власного значення дійсної матриці.
Наведені приклади задач з фізики, що зводяться до відшукання власних значень та власних векторів матриці.
Дана робота має практичне застосування, її матеріал може бути використаний на факультативних заняттях з лінійної алгебри для формування наукового світогляду та математичної культури студентів.
Список використаних джерел
-
Демидович Б. П., Марон И. А. Основы вычислительной математики. — 3-е изд. — М.: Наука, 1966. — 560 с.
-
Ильин В. А., Позняк Э. Г. Линейная алгебра: Учеб. Для вузов — 4-е изд. — М.: Наука. Физматлит, 1999. — 296 с.
-
Калиткин Н. Н. Численные методы. — М.: Мир, 1988. — 512 с.
-
Мальцев А. И. Основы линейной алгебры. — 3-е изд. — М.: Наука, 1968. — 402 с.
-
Марчук Г. И. Методы вычислительной математики — М.: Наука, 1977. — 392с., ил.
-
Приближение функций, дифференциальные и интегральные уравнения/Под ред. Б. П. Демидовича. — М.: Наука, 1987. — 368 с.
-
Фаддеев Д. К., Фаддеева В. Н. Вычислительные методы линейной алгебры. — М.: Физматгиз, 1963. — 408 с.
-
Фокс А., Пратт М. Вычислительная геометрия. Применение в проектировании и на производстве: Пер. с англ. — М.: Мир, 1982. — 304 с., ил.
-
Форсайт Дж., Молер К. Численное решение систем линейных уравнений. — М.: Мир, 1969. — 285 с.
-
Форсайт Дж., Малькольм М., Моулер К. Машинные методы математических вычислений: Пер. с англ. — М.: Мир, 1980. — 277 с., ил.
-
Хемминг Р. В. Цыфровые фильтры: Пер. с англ./Под ред. А. М. Трахтмана — М.: Советское радио, 1980. — 224 с., ил.
-
Шуп Т. Решение инженерных задач на ЭВМ: Практическое руководство. Пер. с англ. — М.: Мир, 1982. — 238с., ил.
1 Нормуванням (на одиницю) вектора х називають множення його на ; нормований вектор має одиничну довжину.