85539 (612509), страница 2

Файл №612509 85539 (Власні значення і власні вектори матриці) 2 страница85539 (612509) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Розглянемо довільну матрицю

Матриця

що отрималася з А заміною рядків стовпцями, називається транспонованою по відношенню до А.

Для довільних матриць А, В мають місце наступні правила транспонування:

,

де, α, β — довільні числа.

Якщо А — довільна квадратна матриця і

то А називається симетричною; якщо ж

то — кососиметричною. [4]

Поняття визначника. Розглянемо довільну квадратну матрицю будь-якого порядку n:

Визначник (або детермінант) визначається для довільної квадратної матриці А, і являє собою поліном від всіх її елементів. Позначається — або det(A), або — в розгорнутому вигляді

(матриця обмежується вертикальними лініями). Маючи на увазі порядок матриці А, про її визначник кажуть як про визначник порядку п.

Для п=1:

для п=2:

для п=3:

для п = 4 формула стає громіздкою.

Введемо тепер визначник довільного порядку п.

Впорядкована пара різних натуральних чисел (а,b) утворює інверсію (або порушення порядку), якщо . Будемо позначати число інверсій в парі (а,b) через . Таким чином

Число інверсій в послідовності різних натуральних чисел визначається наступним чином:

Визначником (або детермінантом) матриці

Називається

де сумма поширюється на всілякі перестановки елементів , Число п називається порядком визначника. В загальному випадку сума, що визначає детермінант порядку п, містить п! доданків, кожен з яких являє собою добуток п елементів визначника, взятих по одному з кожного рядка й з кожного стовпця (тобто після того, як в добуток вставляється елемент більше в цей добуток не береться жодного елемента з j-го рядка та k-го стовпця). Знак в добутку визначається по вказаному вище правилу.

    1. Власні значення та власні вектори матриці

Якщо А — квадратна матриця п-го порядку і при , то число називається власним значенням матриці, а ненульовий вектор х — відповідним йому власним вектором. Перепишемо задачу в такому вигляді

(1)

Для існування нетривіального розв’язку задачі (1) має виконуватися умова

(2)

Цей визначник являє собою многочлен п-ї степені від ; його називають характеристичним многочленом. Значить, існує п власних значень — коренів цього многочлена, серед яких можуть бути однакові (кратні).

Якщо знайдено деяке власне значення, то, при підстановці його в однорідну систему (1), можна визначити відповідний власний вектор. Будемо нормувати власні вектори1. Тоді кожному простому (не кратному) власному значенню відповідає один (з точністю до напрямку) власний вектор, а сукупність всіх власних векторів, що відповідають сукупності простих власних значень, лінійно-незалежна. Таким чином, якщо всі власні значення матриці прості, то вона має п лінійно-незалежних власних векторів, які утворюють базис простору.

Кратному власному значенню кратності р може відповідати від 1 до р лінійно-незалежних власних векторів. Наприклад, розглянемо такі матриці четвертого порядку:

(3)

В кожної з них характеристичне рівняння приймає вигляд , а отже, власне значення і має кратність р=4. Проте в першої матриці є чотири лінійно-незалежних власних вектора

(4)

У другої матриці є тільки один власний вектор е1. Другу матрицю називають простою жордановою (або класичною) підматрицею. Третя матриця має так звану канонічну жорданову форму (по діагоналі стоять або числа, або жорданові підматриці, а інші елементи дорівнюють нулеві).

Таким чином, якщо серед власних значень матриці є кратні, то її власні вектори не завжди утворюють базис. Однак і в цьому випадку власні вектори, що відповідають різним власним значенням, являються лінійно-незалежними.[3, стор 156]

При розв’язуванні теоретичних і практичних задач часто виникає потреба визначити власні значення даної матриці А, тобто обчислити корені її вікового (характеристичного) рівняння

det(A - E) = 0 (2)

а також знайти відповідні власні векторі матриці А. Друга задача є простішою, оскільки якщо корені характеристичного рівняння відомі, то знаходження власних векторів зводиться до відшукання ненульових розв’язків деяких однорідних лінійних систем. Тому ми в першу чергу будемо займатися першою задачею — відшуканням коренів характеристичного рівняння (2).

Тут в основному застосовуються два прийоми: 1) розгортання вікового визначника в поліном n-го степеня

D() = det(A - E)

з подальшим розв’язком рівняння D() = 0 одним з відомих наближених, взагалі кажучи, способів (наприклад, методом Лобачевського-Греффе) наближене визначення коренів характеристичного рівняння (найчастіше найбільших по модулю) методом ітерації, без попереднього розгортання вікового визначника.

Розгортання вікового визначника.

Як відомо, віковим визначником матриці А = [aij] називається визначник вигляду

D() = det(A - E) = (1)

Прирівнюючи цей визначник до нуля, одержуємо характеристичне рівняння

D() = 0

Якщо потрібно знайти все коріння характеристичного рівняння, то доцільно заздалегідь обчислити визначник (1).

Розгортаючи визначник (1), одержуємо поліном n-го степеня

(2)

Де

є сума усіх діагональних мінорів першого порядку матриці А.

є сума всього діагонального мінору другого порядку матриці А;

— сума всіх діагональних мінорів третього порядку матриці А і т.д. Нарешті

n = det A.

Легко переконатися, що число діагональних мінорів k-го порядку матриці А дорівнює

(k = 1, 2, …, n ).

Звідси одержуємо, що безпосереднє обчислення коефіцієнтів характеристичного полінома (2) еквівалентно обчисленню

визначників різних порядків. Остання задача, взагалі кажучи, технічно важко здійснена для скільки-небудь великих значень n. Тому створені спеціальні методи розгортання вікових визначників (методи А. Н. Крилова, А. М. Данілевського, Леверье, метод невизначених коефіцієнтів, метод інтерполяції та ін.).

Розділ ІІ. Знаходження власних векторів і власних значень матриць

    1. Метод А. М. Данілевського

Суть методу А. М. Данілевського [1] полягає в приведенні вікового визначника до так званого нормального виду Фробеніуса

. (1)

Якщо нам вдалося записати вікового визначника у формі (1), то, розкладаючи його по елементах першого рядка, матимемо:

Або

. (2)

Таким чином, розгортання вікового визначника, записаного в нормальній формі (1), не представляє труднощів. Позначимо через

дану матрицю, а через

— подібну їй матрицю Фробеніуса, тобто

,

де S - особлива матриця.

Оскільки подібні матриці володіють однаковими характеристичними поліномами, то маємо:

det(A-E)= det(P-E). (3)

Тому для обґрунтування методу досить показати, яким чином, виходячи з матриці А, будується матриця Р. Згідно методу А. М. Данілевського, перехід від матриці А до подібної їй матриці Р здійснюється за допомогою т - 1 перетворення подібності, що послідовно перетворюють рядки матриці А, починаючи з останньої, у відповідні рядки матриці Р.

Покажемо початок процесу. Нам необхідно рядок

перевести в рядок 0 0 ... 1 0. Припускаючи, що , розділимо всі елементи (n-1) - го стовпця матриці А на . Тоді її n-й рядок прийме вигляд

.

Потім віднімемо (n-1) - й стовпець перетвореної матриці, помножений відповідно на числа , зі всієї решти її стовпців.

В результаті одержимо матрицю, останній рядок якої має бажаний вигляд 0 0 ... 1 0. Вказані операції є елементарними перетвореннями, що здійснюються над стовпцями матриці А. Виконавши ці ж перетворення над одиничною матрицею, одержимо матрицю

Де

при і ≠ n - 1(4)

І

.(4')

Звідси робимо висновок, що проведені операції рівносильні множенню справа матриці на матрицю А, тобто після вказаних перетворень одержимо матрицю

. (5)

Використовуючи правило множення матриць, знаходимо, що елементи матриці В обчислюються за наступними формулами:

(6)

(6')

Проте побудована матриця не буде подібна матриці А. Для того щоб мати перетворення подібності, потрібно обернену матрицю зліва помножити на матрицю В:

.

Безпосередньою перевіркою легко переконатися, що обернена матриця має вигляд

(7)

Нехай

Отже

(8)

Оскільки, очевидно, множення зліва матриці на матрицю В не змінює перетвореного рядка останньої, то матриця C має вигляд

(9)

Перемножуючи матриці (7) і B (5), матимемо:

(10)

І

(10')

Таким чином, множення на матрицю В змінює лише (n - 1) -й рядок матриці В. Елементи цього рядка знаходяться за формулами (10) і (10'). Одержана матриця C подібна матриці А і має один зведений рядок. Цим закінчується перший етап процесу.

Далі, якщо , то над матрицею C можна повторити аналогічні операції, узявши за основу (n - 2) -й її рядок. В результаті одержимо матрицю

Характеристики

Тип файла
Документ
Размер
4,01 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6695
Авторов
на СтудИзбе
289
Средний доход
с одного платного файла
Обучение Подробнее