151303 (598929), страница 3

Файл №598929 151303 (Механика, молекулярная физика и термодинамика) 3 страница151303 (598929) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Момент инерции тела характеризует инертные свойства тела при вращательном движении и зависит от распределения массы тела относительно оси вращения.

Рис. 5






- момент инерции материальной точки массой m, находящейся на расстоянии r от оси.

- момент инерции системы материальных точек.

- момент инерции тела, где - плотность тела.

Момент инерции тела относительно произвольной оси может быть рассчитан по

теореме Штейнера: момент инерции тела

относительно оси O'O равен сумме момента инерции тела относительно оси, проходящей через центр масс и параллельной O'O, и произведения массы тела на квадрат расстояния между осями (рис. 6):


.

Моментом импульса материальной точки называется векторная величина, равная векторному произведению радиуса вектора на импульс точки (рис. 7):

.

Моментом импульса системы материальных точек называется геометрическая сумма моментов импульсов точек, составляющих систему:

Рис. 6


Моментом импульса тела относительно оси вращения называется величина

,

где - момент инерции тела относительно данной оси.

Рис. 7

Основной закон динамики вращательного движения:

Скорость изменения момента импульса тела относительно оси равна результирующему моменту внеш­них сил относительно той же оси. При постоянном моменте инерции угловое ускорение, приобретаемое телом, пропор­ционально моменту сил, приложенных к телу, и обратно пропорционально моменту инерции тела:

.

Из законов динамики поступательного и вращательного движений следует условие равновесия тел:

2.3. Некоторые силы в механике.

  • сила тяжести, - ускорение свободного падения.

N

  • реакция опоры,

Fтр = kN

  • сила трения, k - коэффициент трения.

Fх = - kx

  • сила упругости, k - коэффициент жесткости, х – дефор­ма­ция.

Fн

  • сила натяжения нити или подвеса, численно равная весу тела.

P

P = mg

P =m(g+а)

P = m(g-а)

  • вес тела, сила с которой тело действует на опору или подвес.

  • опора покоится.

  • опора движется с ускорением а, направленным вверх.

  • опора движется с ускорением а, направленным вниз.

3. Работа и механическая энергия.

3.1. Работа и мощность при поступательном и вращательном движениях.

У материальной точки (тела) в процессе силового взаимодействия с другими телами может изменяться состояние движения (координаты и скорость). В этом случае говорят, что над телом совершается работа. В механике принято говорить, что работа совершается силой. Работа – это физическая величина, характеризующая процесс превращения одной формы движения в другую.

Элементарной работой силы на малом перемещении называется величина, равная скалярному произведению силы на перемещение:

,

где - элементарный путь точки приложения силы за время dt, - угол между векторами и .

Если на систему действуют несколько сил, то результирующая работа равна алгебраической сумме работ, совершаемых каждой силой в отдельности.

Работа силы на конечном участке траектории или за конечный промежуток времени может быть вычислена следующим образом:

.

Если = const, то А= .

При вращательном движении работа определяется моментом сил:

,

если М = const, то А=М.

Быстроту совершения работы характеризует мощность.

Мощностью называется скалярная величина, равная работе, совершаемой в единицу времени:

.

При вращательном движении мощность определяется следующим образом:

.

3.2. Консервативные и неконсервативные силы.

Консервативными силами называются силы, работа которых не зависит от пути перехода тела или системы из начального положения в конечное. Характерное свойство таких сил - работа на замкнутой траектории равна нулю:

К консервативным силам относятся: сила тяжести и сила упругости.

Неконсервативными силами называются силы, работа которых зависит от пути перехода тела или системы из начального положения в конечное. Работа этих сил на замкнутой траектории отлична от нуля. К неконсервативным силам относятся: сила трения, сила сопротивления и т.д.

3.3. Кинетическая энергия при поступательном и вращательном движениях.

Кинетической энергией тела называется функция механического состояния, зависящая от массы тела и скорости его движения (энергия механического движения).

Кинетическая энергия поступательного движения: . Кинетическая энергия вращательного движения: .

При сложном движении твёрдого тела его кинетическая энергия может быть представлена через энергию поступательного и вращательного движения:

.

Свойства кинетической энергии:

1. Кинетическая энергия является конечной, однозначной, непрерывной функцией механического состояния системы.

2. Кинетическая энергия не отрицательна: ЕК 0.

3. Кинетическая энергия системы тел равна сумме кинетических энергий тел, составляющих систему.

4. Приращение кинетической энергии тела или системы равно работе всех сил, действующих на систему или на тело: .

3.4. Потенциальная энергия.

Потенциальная энергия системы - это функция механического состояния системы, зависящая от взаимного расположения всех тел системы и от их положения во внешнем потенциальном поле сил. Убыль потенциальной энергии равна работе, которую совершают все консервативные силы (внутренние и внешние) при переходе системы из начального положения в конечное.

ЕП1 - ЕП2 = ЕП = А12конс, .

Из определения потенциальной энергии следует, что она может быть определена по консервативной силе, причём с точностью до произвольной постоянной, значение которой определяется выбором нулевого уровня потенциальной энергии.

.

Таким образом, потенциальная энергия системы в данном состоянии равна работе, совершаемой консервативной силой при переводе системы из данного состояния на нулевой уровень.

Свойства потенциальной энергии:

1. Потенциальная энергия является конечной, однозначной, непрерывной функцией механического состояния системы.

2. Численное значение потенциальной энергии зависит от выбора уровня с нулевой потенциальной энергией.

Как потенциальная энергия может быть найдена по известной консервативной силе, так и консервативная сила может быть найдена по потенциальной энергии:

,

причем: , , .

Примеры потенциальной энергии:

1) - потенциальная энергия тела массой m, поднятого на высоту h от нулевого уровня энергии в поле тяжести Земли;

  1. - потенциальная энергия упругого деформированного тела, х - модуль деформации тела.

4. Законы сохранения в механике.

4.1. Закон сохранения полной механической энергии.

Полная механическая энергия системы тел равна сумме их кинетической и потенциальной энергии взаимодействия этих тел друг с другом и с внешними телами:

Е = Ек + Еп.

Приращение механической энергии системы определяется работой всех неконсервативных сил (внешних и внутренних):

.

Закон сохранения полной механической энергии: Полная механическая энергия системы тел, на которые действуют только консервативные силы, остается постоянной.

В замкнутой системе полная механическая энергия остается постоянной, если между телами, составляющими систему, действуют только консервативные силы.

4.2. Закон сохранения импульса. Центральный удар двух тел.

Закон сохранения импульса: Полный импульс замкнутой системы остается посто­янным.

Для замкнутой системы будут сохраняться и проекции импульса на координатные оси:

.

Если 0, но =0, то будет сохраняться проекция импульса системы на ось Х.

Рассмотрим центральный удар двух тел. Центральным называется удар, при котором тела движутся вдоль прямой, соединяющей их центры масс. Выделяют два предельных вида такого удара: абсолютно упругий и абсолютно неупругий.

Для двух тел массами m1 и m2 , движущихся со скоростями и вдоль оси X навстречу друг другу, скорости их после абсолютно упругого центрального удара можно найти по формулам:

; .

При этом сохраняется импульс системы тел и полная механическая энергия.

Если удар абсолютно неупругий, то

.

Тела после такого удара движутся вместе. Импульс системы тел сохраняется, а полная механическая энергия не сохраняется. Часть механической энергии переходит в энергию неупругой деформации и во внутреннюю энергию тел.

4.3. Закон сохранения момента импульса.

Закон сохранения момента импульса: Момент импульса системы тел сохраняется, если результирующий момент внешних сил, действующих на систему, равен нулю:

.

Если результирующий момент внешних сил не равен нулю, но рана нулю проекция этого момента на некоторую ось, то проекция момента импульса системы на эту ось не изменяется.

Характеристики

Тип файла
Документ
Размер
10,65 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее