151303 (598929), страница 7

Файл №598929 151303 (Механика, молекулярная физика и термодинамика) 7 страница151303 (598929) страница 72016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

Процесс самопроизвольного перехода системы в равновесное состояние называется релаксацией, а время этого процесса - временем релаксации. До истечения времени релаксации состояние системы остается неравновесным, а сам процесс релаксации является неравновесным.

При изменении внешних условий или воздействии на систему, параметры состояния будут изменяться, и система перейдет в новое состояние. Этот процесс перехода называется термодинамическим процессом, он может быть равновесным или неравновесным. Процесс называется равновесным, если в ходе его система проходит последовательность равновесных состояний. Равновесными процессами являются бесконечно медленно протекающие процессы (хорошим приближением являются процессы, время протекания которых много больше времени температурной релаксации). Равновесное состояние и равновесный процесс изображаются на диаграмме состояний соответственно точкой и линией.

Рассмотрим основные термодинамические параметры: V – объем системы или тела; Р – давление (абсолютное значение средней силы, действующей со стороны вещества жидкости или газа на каждую из поверхностей помещенной в них единичной площадки); Т – абсолютная температура, характеризует интенсивность теплового движения частиц системы. В случае классического характера движения частиц системы средняя кинетическая энергия поступательного движения одной частицы пропорциональна температуре

,

где m – масса одной частицы, v – ее скорость, vкв- средняя квадратичная скорость движения молекул, k = 1.3810-23Дж/К – постоянная Больцмана.

1. Молекуляро - кинетическая теория идеальных газов

    1. Уравнение состояния

В состоянии термодинамического равновесия объем V, давление Р и температура Т находятся в функциональной зависимости, которую можно выразить уравнением

F (P,V,T) = 0.

Это соотношение называется уравнением состояния тела (системы). Вид функции F(P,V,T) различен для разных тел и точно установлен только в одном случае, а именно, для идеального газа. Идеальным называется газ, в котором

,

где - среднее время столкновения частиц, - среднее время свободного пробега частиц. При этом средняя длина свободного пробега частиц должна быть много меньше размеров сосуда, в котором заключен газ. Данные условия выполняются достаточно хорошо для газов, молекулы которых имеют простое строение, даже при давлениях близких к атмосферному.

Уравнение состояния идеального газа можно получить, рассмотрев давление, создаваемое газом на стенку сосуда. Оно возникает в результате передачи импульса участку стенки при столкновениях с ним молекул газа. Учитывая, что в равновесном состоянии соударения молекул в среднем носят упругий характер, давление идеального газа оказывается пропорциональным средней энергии поступательного движения частиц, заключенных в единице объема

,

где n – плотность (концентрация) частиц, n = N/V, N – число частиц.

Используя связь кинетической энергии молекул и температуры, получаем

P = nkT.

Существует несколько форм записи этого уравнения

PV = NkT

PV = NAkT = RT.

В ней = - число молей газа, R = NAk = 8.31 Дж/мольК – универсальная газовая постоянная. Используя выражение для количества вещества через массу и молярную массу газа можно получить известное уравнение Клапейрона – Менделеева

PV = RT.

Из последнего уравнения состояния можно получить известный закон Дальтона и уравнения изопроцессов:

а) давление механической смеси газов равно сумме парциальных давлений газов, входящих в смесь

PV = ( )RT

б) изотермический – Т=const, PV = const, P1V1 = P2V2;

изобарический - P = const, ;

изохорический - V = const, .

1.3 Уравнение состояния Ван-дер-Ваальса

При увеличении плотности (давления) поведение газа все сильнее отличается от поведения идеального газа. Это объясняется тем, что при малых средних расстояниях между молекулами, все большее значение приобретают силы межмолекулярного взаимодействия. На малых расстояниях эти силы являются силами отталкивания, а на больших - силами притяжения. Влияние этих сил на вид уравнения состояния можно приближенно учесть следующим образом. Для реальных газов давление должно резко возрастать при конечном объеме, равном по порядку величины объему всех частиц газа. Обозначим этот конечный объем для одного моля через – b, тогда давление газа может быть записано в виде

Действие сил притяжения между молекулами проявляется в уменьшении давления газа по сравнению с приведенной величиной. Уменьшение давления связано с тем, что на молекулу, находящуюся у стенки сосуда, действует сила направленная внутрь сосуда. Она обусловлена притяжением со стороны молекул газа, находящихся в его объеме. В первом приближении ее величина пропорциональна концентрации молекул n = , а, учитывая, что давление само пропорционально концентрации, поправка на уменьшение давления будет пропорциональна n2= . Учитывая это можно прийти к соотношению

P = ,

которое в форме

называется уравнением Ван-дер-Ваальса (для одного моля газа). Поправки a и b- постоянные Ван-дер-Ваальса, учитывающие, соответственно, действие сил притяжения и отталкивания между молекулами газа.

1.4. Внутренняя энергия

Важной характеристикой состояния системы является ее внутренняя энергия. Она определяется как среднее значение полной энергии ее частиц. Во внутренней энергии можно выделить следующие составляющие:

  • энергия поступательного, вращательного и колебательного движений атомов и молекул;

  • энергия межмолекулярного взаимодействия;

  • энергия связи атомов в молекулах (химическая энергия);

  • энергия связи электронов в атомах;

  • энергия связи атомных ядер и др.

При различных процессах, происходящих в системе, происходят изменения внутренней энергии. Как правило, это происходит из-за изменения одной или нескольких составляющих внутренней энергии, поэтому и в самой внутренней энергии следует учитывать только те составляющие, которые изменяются в ходе процесса. Отметим общие свойства внутренней энергии:

  1. в состоянии теплового равновесия движение частиц системы таково, что в любой момент времени полная энергия частиц с высокой степенью точности равна внутренней энергии (статистические флуктуации очень малы);

  2. внутренняя энергия системы является функцией ее термодинамических параметров;

  3. внутренняя энергия обладает свойством аддитивности, т.е. внутренняя энергия системы равна сумме внутренних энергий частей (макроскопических), составляющих данную систему.

Определим внутреннюю энергию идеального газа в равновесном состоянии – это энергия поступательного, вращательного и колебательного движений атомов и молекул. Поступательное движение частиц газа носит классический характер, а вращательное и колебательное движение – квантовый, т.е. такие движения возникают только про сообщении молекулам конечной порции энергии Е. Для большинства газов Екол 10-20Дж, что соответствует температуре Ткол 10 3К, Евр10-21Дж, а температура Твр 10 К. Общая закономерность квантовых движений следующая: с ростом температуры квантовое движение быстро приобретает классический характер. Поэтому при обычных условиях можно движение молекул считать классическим и для вычисления внутренней энергии воспользоваться законом равнораспределения энергии по классическим степеням свободы.

«В состоянии теплового равновесия на каждую поступательную и вращательную степень свободы приходится в среднем энергия равная кТ/2. а на колебательную – кТ».

Числом степеней свободы называется минимальное количество координат, однозначно определяющих положение тела (системы) в пространстве, или количество независимых движений, благодаря которым тело обладает энергией. В атомарном газе каждый атом имеет три поступательных степени свободы, в газе с двухатомными молекулами – каждая молекула имеет три поступательных и две вращательных степени свободы, в газе с многоатомными молекулами, в общем случае, - три поступательных и три вращательных. Тогда внутренняя энергия газ имеет вид

U = N = ,

где i – число степеней свободы молекул газа.

1.4. Статистические распределения.

При тепловом движении положения частиц, величина и направление их скоростей изменяются случайным образом. Вследствие гигантского числа частиц, случайный характер их движения, проявляется в существовании определенных статистических закономерностей в распределении частиц системы по координатам, значениям скоростей и т.д. Подобные распределения характеризуются соответствующими функциями распределения. Функция распределения (плотность вероятности) характеризует распределения частиц по соответствующей переменной (координаты, величины скоростей и т.д). В основе классической статистики лежат следующие положения:

  • все частицы классической системы различимы (т.е. их можно пронумеровать и следить за каждой частицей);

  • все динамические переменные, характеризующие состояние частицы, изменяются непрерывно;

  • в заданном состоянии может находиться неограниченное число частиц.

1.4.1. Распределение Максвелла.

В состоянии теплового равновесия как бы не изменялись скорости молекул при столкновениях, средняя квадратичная скорость молекул в газе, при Т=cоnst, остается постоянной и равной . Это объясняется тем, что в газе, устанавливается некоторое стационарное статистическое распределение молекул по значениям скоростей, называемое распределением Максвелла. Распределение Максвелла описывается некоторой функцией f(), называемой функ­ци­ей распределения молекул по скоростям.

,

где N – общее число молекул, dN()- число молекул, скорости которых принадлежат интервалу скоростей от до + d.

Таким образом, функция Максвелла f() равна вероятности того, что величина скорости наугад выбранной молекулы принадлежит единичному интервалу скоростей вблизи значения . Или она равна доле молекул, скорости которых принадлежат единичному интервалу скоростей вблизи значения .

рис.12 рис. 13

Явный вид функции f() был получен теоретически Максвеллом

.

График функции распределения приведен на рис.12. Из графика следует, что функция распределения стремится к нулю при 0 и и проходит через максимум при некоторой скорости В, называемой наиболее вероятной скоростью. Этой скоростью и близкой к ней обладает наибольшее число молекул. Кривая несимметрична относительно В.

Значение наиболее вероятной скорости можно найти, используя условие для максимума функции f().

.

На рис. 13 показано смещение В с изменением температуры, при этом площадь под графиком остается постоянной и равной 1, что следует из условия нормировки функции Максвелла

.

Условие нормировки следует из смысла данного интеграла – он определяет вероятность того, что скорость молекулы попадает в интервал скоростей от 0 до . Это достоверное событие, его вероятность, по определению, принимается равной 1. Знание функции распределения молекул газа по скоростям позволяет вычислять средние значения любых функций скорости, в частности средней арифметической скорости .

.

По функции Максвелла можно определить долю молекул, скорости которых принадлежат заданному интервалу скоростей или превышают некоторое значение скорости, например, вторую космическую, что определяет рассеяние атмосферы.

.

1.4.2. Распределение Больцмана

Тепловое движение частиц тела приводит к тому, что положение их в пространстве изменяется случайным образом. Поэтому можно ввести функцию распределения частиц по координатам, определяющую вероятность обнаружения частицы в том или ином месте пространства.

Характеристики

Тип файла
Документ
Размер
10,65 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее