150898 (598894), страница 14

Файл №598894 150898 (Синхронные машины. Машины постоянного тока) 14 страница150898 (598894) страница 142016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 14)

Для контура коммутируемой секции, замкнутой щеткой (рис. 2.30, б), можно написать уравнение

, (2.19)

где i1 и i2–мгновенные значения токов, проходящих через пластины 1 и 2; i-ток в коммутируемой секции; r1 и r2–сопротивления переходного контакта между щеткой и коллекторными пластинами: сбегающей 1 и набегающей 2; rс–сопротивление секции.

Поскольку сопротивление секции всегда значительно меньше сопротивлений щеточного контакта, влияние сопротивления rс на процесс коммутации весьма незначительно и им можно пренебречь. Тогда из (2.19) получим

. (2.19а)

Это уравнение называют основным уравнением коммутации. Оно является нелинейным дифференциальным уравнением с переменными коэффициентами, так как э.д.с. ер пропорциональна di/dt; э.д.с. ек является функцией Вк, сопротивления rх· и r2 являются функциями времени, а также плотности тока в щеточном контакте и скорости ее изменения, т.е. зависят от тока i и его производной.

Решение уравнения (2.19а) может быть получено при различных упрощающих предположениях. Далее изложены наиболее распространенные методы решения этого уравнения.

Рис. 2.31 – График изменения тока в коммутируемой секции при идеальной прямолинейной коммутации

Коммутация сопротивлением при ширине щетки, равной ширине коллекторной пластины. Из рис. 2.30, б следует, что токи il и i2, проходящие через сбегающую и набегающую коллекторные пластины,

i1 = ia + i; i2 = iai (2.20)

Подставляя значения i1 и i2 в уравнение (2.19а) и решая его относительно i, получим

. (2.21)

Если предположить, что сопротивления r1 и r2 не зависят от плотности тока и определяются только площадями соприкосновения s1 и s2 щетки с коллекторными пластинами 1 и 2, то отношение сопротивлений

.

В этом случае уравнение (2.21) принимает вид

. (2.21а)

Если подобрать ек так, чтобы в любой момент времени выполнялось условие

ev + eK = 0, (2.22)

то дифференциальное уравнение (2.21а) превращается в линейное алгебраическое уравнение

i = ia(1–2t/TK). (2.23)

Коммутацию, при которой ток i изменяется по линейному закону согласно (2.23), называют идеальной прямолинейной коммутацией (рис. 2.31).

Рассмотрим более подробно этот важный для практики случай коммутации. При идеальной прямолинейной коммутации сбегающая коллекторная пластина 1 выходит из-под щетки без разрыва тока, так как

i1 = ia + i = ia + ia(1–2t/TK) = 2ia (1 – t/TK),

и в момент времени t = Тк ток i1 = 0 (весь ток 2iа проходит через пластину 2). Следовательно, под сбегающим краем щетки искрение возникать не будет. Кроме того, в рассматриваемом случае плотность тока под щеткой в местах соприкосновения ее с пластинами 1 и 2 остается все время постоянной и равной среднему значению: Δщ1 = Δща==2iа/Sщ = const. Так, например, в месте контакта щетки с коллекторной пластиной 1

. (2.24)

Аналогично, для коллекторной пластины 2

. (2.24а)

Непосредственно плотность тока мало влияет на интенсивность искрения, однако равномерное распределение тока под щеткой способствует уменьшению потерь в щеточном контакте и поэтому считается положительным фактором.

Идеальная прямолинейная коммутация положена в основу инженерных методик расчета коммутации, предложенных рядом авторов. Главным условием этого расчета является взаимная компенсация мгновенных значений реактивной э.д.с. eр и э.д.с. ек, создаваемой внешним полем.

В рассмотренном случае при прямолинейной коммутации di/dt = const, поэтому

, (2.25)

т.е. реактивная э.д.с. является величиной постоянной, равной среднему значению ер.ср. Следовательно, при расчетах коммутации компенсация мгновенного значения реактивной э.д.с. сводится к компенсации среднего значения ер.ср.

Коммутация за счет э. д. с, создаваемой внешним полем. При выводе уравнения прямолинейной коммутации было принято произвольное допущение, что сопротивление щеточного контакта не зависит от плотности тока. Может быть предложена и другая методика анализа коммутации, при которой пренебрегается влиянием щеточного контакта. Действительно, проведенные эксперименты показывают, что в крупных машинах при удовлетворительной коммутации разница в падениях напряжения и1i1r1 и u2 = i2r2 в щеточном контакте составляет менее 0,5 В, в то время как э.д.с. ек превышает 3–4 В, достигая в отдельных случаях 8–10 В. Поэтому предложенное в рассматриваемой методике допущение является вполне обоснованным и основное уравнение коммутации (2.19а) может быть записано в виде

ep + eK = i1r1i2r2 0. (2.26)

Подставляя в уравнение (10.26) значение реактивной э.д.с. ер = – Lрdi/dt и решая его относительно i, получим

. (2.27)

Следовательно, величина и характер изменения тока i в коммутируемой секции в основном определяются коммутирующей э.д.с.

Условием безыскровой коммутации, как и в предыдущем случае, является выход сбегающей коллекторной пластины из-под щетки без разрыва тока, для чего необходимо, чтобы (i1)t=Tк = 0 или (i)t=Tк = – ia

Согласно теореме о среднем из (2.27) имеем

. (2.27а)

Постоянную интегрирования С находим из начальных условий. Так как в начальный момент при t = 0 ток коммутации (i)t=0 = ia, то согласно (2.27) получим C = ia. Положив (i)t=Tк = ia, найдем условие безыскровой коммутации:

, (2.28)

Откуда

. (2.29)

Таким образом, для осуществления безыскровой коммутации необходима компенсация среднего значения реактивной э.д.с. в процессе коммутации. Если внешнее поле сделать постоянным, т.е. ек = ек-ср, то

. (2.30)

Следовательно, в этом, практически важном, простейшем случае обе методики дают тождественные результаты.

В расчетной практике для определения среднего значения реактивной э.д.с. в секции обмотки якоря часто используют упрощенную формулу, которая может быть получена из (2.29). Для этого ток параллельной ветви ia выражают через линейную нагрузку якоря

,

а период коммутации Тк – через линейную скорость якоря va и число коллекторных пластин K:

. (2.31)

В последних формулах N = 2c–число активных проводников обмотки якоря; Da и Dк–диаметры якоря и коллектора; K-число коллекторных пластин; ωc–число витков в секции.

В результате получим реактивную э.д.с.

. (2.32)

Индуктивность секции

, (2.33)

где Λр–магнитная проводимость для потоков рассеяния секции: пазового Фп; по лобовым частям Фs и дифференциального Фz (по коронкам зубцов) – рис. 2.32, а; lа – li – активная длина якоря (при расчете магнитной проводимости берется удвоенная длина якоря); λр–удельная магнитная проводимость на единицу длины секции.

Поэтому формула (2.32) принимает вид

ep = 2lawcAvaλp. (2.32а)

Удельная проводимость секции с достаточной степенью точности может быть принята равной при открытых (рис. 2.32, б) и полузакрытых (рис. 2.32, в) пазах:

, (2.34)

где hп и bп – высота и средняя ширина паза; hш и bш–высота и ширина щели паза; lsдлина лобовой части секции.

Обычно значения λр = 4 ÷ 8.

На рис. 2.33, а показаны зависимости изменения тока в коммутируемой секции во времени при пренебрежении падениями напряжения i1r1 и i2r2 в щеточном контакте. Идеальной прямолинейной коммутации, т.е. условию eр.ср + ек.ср = 0, соответствует прямая 1.

Рис. 2.32 – Потоки рассеяния секции (а) и размеры паза, определяющие удельную проводимость секции (б, в)

В действительности при работе машины всегда имеются причины, вызывающие неполную компенсацию реактивной э.д.с., т.е. отклонение от условия ер.ср + ек.ср = 0. К этим причинам относятся: технологические допуски при изготовлении коллектора, установке щеткодержателей, установке добавочных полюсов и т.п.; резкие толчки тока нагрузки, перегрузки по току, превышения номинальной частоты вращения, вибрация машины и другие эксплуатационные причины; нестабильность щеточного контакта, из-за которой постоянно изменяется площадь контакта щетки с коллектором (период коммутации Тк) или происходит полный отрыв щетки от коллектора.

Если |ек.ср| < |ер.ср|, то коммутация замедляется, так как согласно правилу Ленца э.д.с. ер замедляет изменение тока i. Обозначив степень некомпенсации э.д.с. через Δ = [|ер.ср| – |ек.ср|]/ep.ср|, получим

. (2.35)

При этом закон изменения тока в коммутируемой секции [см. (2.30)]

. (2.36)

При замедленной коммутации (рис. 2.33, а, прямая 2) в момент окончания коммутации при t = Tк щетка разрывает некоторый остаточный ток iост, вследствие чего между сбегающим краем щетки и сбегающей коллекторной пластиной возникает электрическая дуга. Величина остаточного тока

, (2.37)

или с учетом (2.36)

. (2.37a)

Электромагнитная энергия Wи, выделяющаяся в дуге, возникающей при разрыве остаточного тока, может характеризовать степень искрения. Для рассматриваемого простейшего случая

. (2.38)

Характеристики

Тип файла
Документ
Размер
54,66 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6693
Авторов
на СтудИзбе
289
Средний доход
с одного платного файла
Обучение Подробнее