125516 (598621), страница 2
Текст из файла (страница 2)
6. Рейтингова система оцінювання навчальних досягнень студента
Модуль 1 ( 25 балів)
Лабораторні заняття ( по 5 балів=10)
Модульний тестовий контроль №1 ( 15 балів)
Модуль 2 ( 25 балів)
Лабораторні заняття ( по 5 балів=10)
Модульний тестовий контроль №2 ( 15 балів)
Модуль 3 ( 25 балів)
Лабораторні заняття ( по 5 балів=10)
Модульний тестовий контроль №3 (15 балів)
Підсумковий тестовий контроль ( 25 балів)
7. Вимоги та методичні рекомендації щодо атестації студентів
Для успішного засвоєння матеріалу курсу і, як наслідок, здачі екзамену у вигляді завершального тестування студент повинен дати мінімум 2/3 правильних відповідей на тести, які бдуть проводитися після опрацювання матеріалу кожного змістовного модуля.
Оцінювання. При вивченні курсу «Термодинаміка та теплотехніка» використовується 100-бальна шкала; методи оцінювання: поточне опитування (з допомогою on-line чату чи off-line форуму); тестування за матеріалами кожного модуля; оцінювання виконання індивідуальних завдань та лабораторних робіт; після вивчення всього курсу – підсумкове залікове тестування.
Оцінка за шкалою ВНЗ | Оцінка за національною шкалою | Оцінка за шкалою ECTS |
90-100 | Відмінно | А |
82-89 | Добре | В |
75-81 | Добре | С |
67-74 | Задовільно | D |
60-66 | Задовільно | Е |
35-59 | Незадовільно | FX |
1-34 | Незадовільно | F |
8. Перелік рекомендованої літератури
-
М.Михеев, И.Михеева. Краткий курс теплопередачи, 1961.
-
Баскаров й др. Общая теплотехника, 1963.
-
Н.Кираковский, М.Недужий. Лабораторний практикум по курсу общей теплотехники, 1966.
-
Є.Міговк та В.Єресько, Лабораторні роботи з загальної теплотехніки, 1960.
-
Конспект лекцій
-
Методичні вказівки до лабораторних робіт
Передмова
Посібник “Теоретичні основи теплотехніки” складений в об'ємі лекційного курсу (36 годин) по однойменній дисципліні для студентів напрямку "Інженерна механіка". Посібник складений у відповідності анотації до навчалшої програми.
В посібнику висвітлені основні питання технічної термодинаміки і теорії теплообміну, які забезпечують подальше засвоєння спеціальних дисциплін, враховуючи низку спеціальностей за напрямком “інженерна механіка” а також загальнотехнічну підготовку спеціалістів.
1. Основні положення термодинаміки
1.1 Загальні поняття
Теплотехніка, як наука вивчає методи використання хімічної енергії палива, закони перетворення цієї енергії в теплову, речовини, які приймають участь в цих перетвореннях, а також принципи роботи і конструкції машин і апаратів, які служать для перетворення хімічної енергії в теплову і механічну.
Курс 'Теоретичні основи теплотехніки'' складається із двох розділів: технічна термодинаміка і теорія теплообміну.
Технічна термодинаміка є феноменологічною теорією макроскопічних процесів, які супроводжуються перетворенням енергії.
Першою роботою, яка положила початок розвитку термодинаміки була робота С.Карно. "Роздуми про рушійну силу вогню і про машини, які можуть розвивати цю силу".
Карно поставив питання: "чи обмежена рухома сила теплоти чи вона не має границь; чи має межу можливе удосконалення машини, межу, яку неможливо перейти по самій природі речей ніяким чином, або ж навпаки ці покращення можуть бути безмежно продовженими."
Термодинаміка вивчає властивості тіл не опираючись на будь-які представлення про їх структуру. Вона не розглядає механізм явищ, не цікавиться внутрішньою будовою тіл. Вона досліджує явища які безпосередньо спостерігаються на практиці і проходять з тілами, масштаби яких звичні для людини. Вона оперує тільки з такими величинами, які можуть бути безпосередньо виміряні, або вивчені за допомогою інших залежностей.
Термодинамічною системою називається сукупність матеріальних тіл, які є об'єктом вивчення і знаходяться у взаємодії з навколишнім середовищем
Під рівновагою системи розуміють такий стан, при якому у всіх точках об'єму тиск, температура, питомий об'єм та всі інші властивості одинакові.
За участю окремих тіл, які входять в термодинамічну систему, їх поділяють на робочі тіла (РТ), джерела теплоти (ДТ) і об'єкти роботи (ОР).
Врівноваженим термодинамічним станом називається стан робочого тіла, який не змінюється в часі без зовнішньої енергетичної дії.
Якщо термодинамічна система не взаємодіє з навколишнім середовищем, то її називають ізольованою або замкнутою.
Стан робочого тіла можна охарактеризувати параметрами стану. Повністю стан тіла може бути охарактеризований трьома параметрами стану:
ν -питомий об'єм. М3/кг;
Т- абсолютна температура, К;
р -тиск. Па.
Питомий об'єм -це величина обернена до густини тіла.
(1.1)
Тиск з точки зору молекулярно-кінтичної теорії є середнім результатом ударів молекугт газу,які перебуваютьв неперервному хаотичному русі:
(1.2)
де п - число молекул в одиниці об'єму;
т -маса молекул,кг;
w- швидкість руку, м/с;
Дня вимірювання тиску використовують наступні одиниці вимірювання:
Паскаль (Па), Н/м ; фізична атмосфера (ф.атм); бар; технічна атмосфера (ат); міліметри ртутного стовпчика (мм.рт.ст.), міліметри водного стовпчика (мм.вод.ст).
При переводі в кг/см2 показів ртутних барометрів потрібно враховувати те, що з підвищенням температури повітря, ртуть розширюється. Тому необхідно робити приведення показів барометра до 00 С
В0 = В(1 -0,000172t),
Де В-висота стовпа ртуті при t 0С.
Співвідношення між величинами для вимірювання тиску наступні:
1ат = 1 кГ/см2;
1 ф.ат. = 1,033 кГ/см2 - середній атмосферний тиск на рівні моря при t°=0°;
1 ат.= 735,6 мм.рт.ст. = 10 м.вод.ст.;
1 ф.ат.=1,013 бар
1бар = 10 Н/м =150ми.рт.ст. =10200 мм.вод.ст.
1.2 Температура
Температура -характеризує степінь нагрітості тіл і є мірою середньої кінетичної енергії руху молекул.
Параметром стану єабсолютна температура.
, (1.3)
Де к- постійна Больцмана к= 1,3 8∙10-23 Дж.
Дня вимірювання температури використовуються дві термодинамічні шкали: термодинамічна шкала, основана на другому законі термодинаміки і міжнародна практична шкала, яка одержана за допомогою реперних (опорних) точок. За 0°С прийнято температуру танення льоду, за 100 °С-температуру кипіння в оди.
Крім стоградусної шкали в США користуються шкалою Ф аренгейта °F Температура танення льоду відповідає 320F,а кипінняводи-212 0F.
(1.4)
Основні термодинамічні параметри стану р, ν, Т взаємозв'язані F(р,ν,Т) = 0.
Якщо зовнішні умови, в яких знаходиться термодинамічна система змінюється,то буде змінюватисяі стан системи.
Послідовність змін стану системи складає термодинамічиий процес. Всякий процес зміни стану системи представляє собою відхилення від стану рівноваги.
Порушення рівнов аги спричиняє виникнення в середині с истеми процесів, які протидіють відхиленню від стану рівновага.
Процес, який протікає настільки повільно, що в системі в кожен момент часу встигає встановитись практично врівноважений стан, представляє собою кв азі статичний процес. Якщо в процесі виконання роботи система послідовно проходить через врівноважені стани, то такий гроцес називається врівноважені м
Якщо нескінченно мале розширення системи проходить в зовнішньому середовищі, яке знаходить ся під одним і тимже тиском р, то збльшення об'єму системи супроводжується виконанням роботи
Оборотним називається процес, який може проходитияк в прямому такі в зворотному напрямі так, що при зворотному напрямі система проходить всі ті ж врівноважені стани, що і при прямому. Вході прямого і зворотного процесу як в навколишній системі так і в самому тіш не виникає ніяких залишкових змін. Процеси, які не задовільняють цій умові називають необоротними.
Оборотний процес, зокрема, характеризується тим, що виконаної в ході цього процесу роботи достатньо для того, щоб повернути систему при тих же самих зовнішніх умовах в попередній стан. Мірою необоротності процесу може послужити величина додаткової зовнішньої дії, яка необхідна для того, щоб повернути робочетіло в попередній стан.
Оборотним процесом може бути тільки процес врівноважений.
Теплота і робота представляють дві форми передачі енергії від одного тіла або системи до іншого.
Перетворення теплоти в роботу здійснюється за допомогою робочого тіла.
2. Ідеальні гази. Основне рівняння кінетичної теорії газів
Ідеальними називаються гази, в яких сили міжмолекулярної взаємодії малі і їх можна грирівняги до нуля, об'єм, який займає молекула малий, порівняно з міжмолекулярним пр оміжком.
2.1 Вивід основного рівняння кінематичної теорії газів
Розглянемо кубик із довжиною сторони l В кубику рухається N молекул, які створюють тиск р на грані. Маса газу рівна т
Оскільки тиск на стінки посудини є результатом ударів молекул, то при виведенні рівняння зробимотакі припущення:
швидкість руху всіх молекул однакова і дорівнює їх середній швидкості ш;
тиск молекул здійснюється паралельно до ребер кубика в трьох взаємноперпендикулярних напрямках.
Кожна молекулаггои ударі об стінку змінює свійнапрям на протилежний -ш і виникає зміна імпульсу сини:
Кожна молекула, якщо вона рукається з швидкістю w, за одиницю часу здійснить ходів. При кількості молекул N/3 сума імпульсів буде
і буде рівна загальному тиску на грань:
де
- число молекул в одиниці об'єму.
, (2.1)
Як уже відомо, кінетична енергія пропорційна абсолютній температурі газу:
, (2.1а)
а - коефіцієнт пропорційності.
Якщо помножити ліву і праву частини рівняння (2.1) на повний об'єм газу V і підставити замість його значенняз (2.1а), то одержима
,
де
nV=N,
;
р∙V=m∙R∙T , (2.2)
де R -питома газова стала.
Рівняння одержало назву - рівняння стану ідеального газу, або рівняння Клапейрона. Із рівняння (22) можна одержати відомі закони для ідеальних газів:
при Т= const - закон Бойля-Маріотта; р = const - закон Гей-Люсака;
V=cons t- закон Шарля.
2.2 Газова стала та її фізична суть
Якщо уявити собі, що газ вагою 1 кг при тиску р вміщений в об'єм абсолютно довільної форми, то при нагріванні з об'єму ν1 перевде в об'єм ν2. При цьому виконається робота рівна сині на шлях (рис 2.1):
Рис2.1. До вияснення фізичного змісту газової сталої.
dL=dF∙p∙dS
де dF∙p - сила,
dF -площа,
dS – шлях
Але dF∙dS=dv, тоді