125516 (598621), страница 6

Файл №598621 125516 (Теоретичні основи теплотехніки) 6 страница125516 (598621) страница 62016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

де F-площа поперечного січення, м ;

с - швидкість, м/с;

v -питомий об'єм, м /с.

Рис 11.1. Схема процесу витікання із посудини необмеженої ємності.

По трубопроводу робоче тіло з параметрами Т1,р1,v1 поступає в тепломеханічний агрегат. Тут кожний кілограм робочого тіла одержує від зовнішнього джерела теплоту q і здійснює технічну роботу lтех , наприклад, приводячив рух ротор турбіни, а потім виходить із швидкістю с2, маючи параметри Т2,р2,v2. Оскільки перший закон термодинаміки виконується завжди, то можна записати:

q=∆u+l.(11.2)

При русі тіла по каналу може змінитись внутрішня енергія u2-u1 тіло виконує роботу на витіснення об'єму газу р1v1-р2v2 (рис.11.1). Якщо змінюється швидкість тіла, то частина енергії витрачається на зміну швидкості

В процесі проходження по каналу робоче тіло виконує роботу lтех а такожвиконаєроботу на подолання сил тертя lтp .

Теплота, яка надається тілу в процесі його проходження по каналу, складається з зовнішньої теплоти і теплоти тертя. Тйким чином можна записати:

(11.3)

Враховуючи, що u+ рv = h , qтp =lтр ,запишемо:

(11.4)

Перший закон термодинаміки для потоку можна сформулювати так теплота, підведена до робочого тіла ззовні, витрачається на збільшення ентальпії робочого тіла, виконання технічної роботи і збільшення кінетичної енергіїпотоку.

В диференціальній формі рівняннязагишетьсятак:

Використаємо перший закон термодинаміки до різних типів теплотехнічного обладнання.

Теплообмінний апарат

Для нього lтех=0 , а тому

=h2-h1

Для теппообмінника, встановленого в потоці цей вираз справедливий не тільки в ізобарному процесі, але й в процесі з тертям, коли тиск середовица зменшуєтьсячерез опір.

2 Тепловий двигун

Як правило , =0 тому робоче тіло виконує технічну роботу за рахунок зменшення ентальпії.

=h2-h1

(перший закон термодинаміки),

3. Компресор .

Якщо процес стиснення газу в компресорі проходить без теплообміну з навколишнім середовищем (qреn = 0) і с1 = с2, то =h2-h1 де h2

11.1 Витікання

Канали, в яких проходить збільшення швидкості газу, називаються соплами.

Канали, в яких проходить зменшення швидкості - дифузорами. Процес витікання проходить без теплообміну з зовнішнім середовищем і його можна вважати адіабатним Згідно першого закону (11.4) термодинаміки для відкритих систем при =0 і

Швидкість с2 в адіабатному процесі можнавизначитиза формулою:

Приймаємо с1 = 0, оскільки с1<<с2 тоді

адіабатному процесі:

(11.7)

Тоді

(11.8)

Масові витрати газу шчерез сопла

деƒ-площапоперечногоперерізу сопла, м3 ;

v. -питомий об'єм газу на виході із сопла

Для адіабатного процессу

;

(11.9)

Із виразу (11.9) можна зробити висновок, що масова секундна витрата ідеального газу при витіканні з великого резервуару залежить від площі вихідного січення сопла, властивостей і початкових параметрів газу, а також від кінцевого тиску р2

Якщо побудувати графік залежності

згідно (11.9), то одержимо

При р2=р1 =1, m=0;

При р2=0 =0, m=0

Якщо порівняти теоретично одержану криву (рис. 11.1) з експериментальною кривою залежності

,

то від 1 до точки К криві співпадають. Від точки К дійсні масові витрати залишаються постійними.

Для того, щоб пояснити це розходження Сен-Венан в 1839 році висунув гіпотезу, що в соплі неможливо одержати тиск газу, нижчий ркр який відповідає максимальній витраті пари через сопло.

Рис. 11.1 Графік зміни

Дня визначення максимуму функції

візьмемо першу похідну від виразу в квадр атних дужках рівняння (11 9).

=0 (11.10)

Розділимо ліву і праву частиш рівняння (11.10) на

Одержима

Звідси можна зробити висновок, що величина βкр є постійною величиною і залежить від величини показнік а аді абати.

Для одноатомного газу к = 1,66 і βкр =0,49.

Для двохатомногогазу к = 1,4 і βкр = 0,5 28. Для трьохатомного газу к = 1,3 і βкр =0,546.

11.2 Критична швидкість витікання

В рівняння для визначення швидкості

підставимо значення для βкр

(11.12)

Величина критичної швидкості визначається фізичннми властивостями і початковими параметрами газу.

Із рівняння адіабати випливає, що

Замінюючи значення одфжимо:

Врахуємо також, що

Підставляючи в формулу, одержимо:

- швидкість поширення звуку в середовищі. Таким чином критична швидкість газу при витіканні рівна місцевій швидкості звуку у вихідному січенні сопла.

Як відомо із фізики, імпульс тиску поширюється в стисливому середовищі із швидкістю звуку, тому, коли швидкість витікання менша, чим швидкість звуку, зменшення тиску за соплом передається потоком газу всередину каналу з відносною швидкістю с<а і приводить до перерозприділення тиску. В результаті у вихідному січенні сота встановлюється тиск, рівний тиску середовища.

11.3 Сопло Лаваля

Поставлена задача: побудувати такий профіль сопла, який би забезпечив повне перетворення потенціальної енергії потоку, яка відповідає перепаду тнскувід р1 до р2.

Проведемо аналіз рівняння суцільності потоку

тv=fc . (11.13)

Якщо продиференціювати рівняння тV=fc ,одержимо :

mdv=cdf+fdc (11.14)

Поділимо рівняння (11.14) на рівняння (11.13), одержимо:

Для адіабатного витікання

.

Розділивши це рівняння на с2,одержимо:

Продиференціюємо рівняння адіабати рvk =const, одержима

kpvk-1dv+vkdp=0

Поділимо рівнянняна рVкk, одержимо:

;

Підставимов рівняння (11.15) одержані значення, будемо мати:

(11.15)

де

a2=kpv

Проаналізуємо рівняння.

Оскількн kрс2>0, а dp <0, то в цілому діапазоні зміни швидкості витікання від 0 до с <а , <0, тобто профіль сопла повинен звужуватись.

При с=0 =0 і f=fmin .

Із рівняння також можна зробити висновок, що при всіх швидкостях с>а, >0 і профіль сопла повиненрозширюватись.

11.4 Максимальні масові витрати

Якщо підставити

одеожимо:

Якщо позначити

,

то одержимо

(11.18)

Мінімальне січення сопла :

Площувихідногосічення fвих можнавичислити, якщоприйнятидоуваш, що в довжині каналу масові витрати залишаються постійними.

де р2 - тиск на виході рівний тиску навколишнього середовища кут а= 10-12°.

11.5 Розрахунок пронесу єипікшіняш допомогою h -s-діаграми

Розрахунок процесу витікання за допомогою h -s -діаграми проводять для водяної пари, оскільки вош не є ідеальним газом.

Процес витікання протікає при постійній ентропії і на h -s діаграмі позначається вертикальною прямою (рнс.11.5.1).

Швидкість витікання розраховують за формулою :

Якщо підставити h в кДж/кг, то с=44,7 м/с.

Дня визначення критичної швидкості по h -s -діаграмі використовують метод послідовних наближень.

В першому наближенні задаються значенням k=1,3 і із співвідношення

знаходим Ркр. Потім по значеннях ркр і sкр=s1 визначають питомий об'ємо vкр по h-s- діаграмі.

Із співвідношення для адіабатного процесу, маємо:

таким чином знаходять нове значення k. Розрахунки закінчують, коли значення k співпаде з прийнятим значенням.

11.6 Дійсний процес витікання

В реальних умовах процес витікання є необоротній, ентрогія в процесі зростає.

При цьому ж перепаді тисків різниця ентальпій менша, в результаті чого буде і менша швидкість витікання.

Відношення втрат в соплі до наявного теплоперепаду називається коефіцієнт втрати енергії в соплі ζ0

Якщо визначити ∆h=∆h0(1-ζ0) і підставимо його в формулу,одержимо:

Відношення втрат в соплі до наявного теплоперепаду називається коефіцієнтом втрат енергіївсоті

Якщо визначити АН =А/їо(і-^)іпідставигийогов формупу, одержимо:

Коефіцієнт uс називається швидкісним коефіцієнтом сопла. Він представляє собою відношення дійсної швидкості ωд дотеоретишої.

φ=0,96-0,98 -для добре оброблених каналів.

Відношенні дійсної кінетичної енергії робочого тіла - до теоретичної називається коефщієнтом корисної дії канаяу.

ККД рівний квадрату коефіцієнта швидкості газу.

Теплота тертя без врахування початкової швидкості визначається так

qTp=φ(h1-h2)

h1-h2-енгальпія робочого тіпана початку і в кінці оборотного гроцесу.

11.7 Дроселювання газу і пари

Дроселюванням називається необоротній процес, в якому тиск при проходження газу через вузький отвір зменшується без здійснення зовнішньої роботи

При проходженні газу через вузький отвір кінетична енергія газу і його швидкість в вузькому січенні збільшується, що приводить до падіння температури і тиску. За отвором, коли газ тече по повному січенні, швидкість знов знижується, а тиск підвищується, але до початкового тиску не доходить Деяка зміна швидкості про йде в зв'язку ззошьшеннямпитомого об'єму газу від зменш ення т ис ку.

Рівняння дроселювання. Нехай на початку трубопроводу є вуїький отвір (рис. 11.6.1.).

Рис 11.7.1. Схемапроцесудроселювання.

Січення 1-1і 2-2 в трубопроводі закриті невагомими поршнями, які можуть рухатись без тертя. На поршеньї площею Д діє тиск р1 а на поршень 2 площею А1 тиск Р2. Причому р1 >р2.

При русі газу поршень 1 перемістився в положення 1ґ, а 2 в 2ґі відповіднопройдугьшлях s1 і s2.

Для руху газу необхідно затратити роботу p1s1A1 або р1v1. Частина цієї роботи p2s2A2 або р2v2, буде витрачена на подолання сили р2, а різниця визве зміну енергії робочого тіла. →p1v1-p2v2

Якщо початкова швидкість газу ω1 і внутрішня енергія U1 кінцева швидкість ω2 і внутрішня енергія U2 то

p1v1-p2v2= U1- U2=

При умові, що швидкість ω1, і ω2 мало відрізняється одна від одної, їх зміною можна знехтувати

Тоді:

(U1+ p1v1)-( U2+ p2v2)=0 h1-h2= 0, h1= h2

Але оскільки ентальпія є однозначною функцєю температури то значення Т1 = Т2.

В результаті процесу дроселювання реального газу ентальпія для початкових і кінцевих значень залишається однаковою, ентропія і об'єм збільшуються тиск падає, а температура може збільшуватись, зменшуватись або залишатись так ою ж.

11.8 Ефект Джоуля -Тамсона

В кожному реальному газі є сили гритягання між молекуламн і якщо газ розширяється, то на збільшення віддані між частинками або на зміну їх внутрішньої потенціальної енергії тіла завжди затрачується робота, що зв'язано із зміною температури.

Відношення зміни температури реального газу при дроселюванні до зміни тиску в цьому процесі називається ефектом Джоуля-Томсона.

Дня ідеального газу ефект Джоуля-Томсона рівний нулю. Відповідно зміна температури реального газу при дроселюванні визначається відхиленням властивостей реального газу від ідеального, що обумовлено дією міжмолекулярних сил.

Процес дроселювання робочого тіла супроводжується затратою або здійсненням зовнішньої роботи р2v2 – р1v1 Так як при дроселюванні р2v1, то різниця р2v2 – р1v1 до, може бути більша від нуля менша нуля і рівна нулю

Оскільки для адіабатного процессу

h1= h2 і u1+p1v1=u2+p2v2

або

u1-и2 = р2v2–р1v1 -рм,

то витікає, що зовнішня робота проштовхування здійснюється за рахунок зміни внутрішньої енергії. Внутрішня енергія складається з кінетичної і потенцальної. Потенціальна енергія завжди збільшується врезультаті збільшення об'єму.

Якщо р2v2–р1v1=0 , то потенціальна енергія збільшується і процес повинен супроводжуватись охолодженням газу.

При р2v2>р1v1 і и2

В деяких випадках р2v2–р1v1 може бути рівним зміні внутрішньої енергії і при цьому кінетична енергія залишається без змінні відповідно Т1= Т2. Такий випадок називається інверсією газу, а температура, при якій це проходить -температурою інверсії.

Розрізняють ефекти дроселювання: диференціальний температурний, при якому тиск і температура міняються на безкінечно малу величину і інтегральний температурний, коли тиск і температура міняються на кінцеву величину. Якщо тиск міняється на безконечно малу величину dр , то проходить безконечно мала зміна температури dТ1 =α1dр1 або

a1-називають дифферащальним температурним ефектом Джоуля -Томсона.

Стан реального газу при адіабатному дроселюванні, в якому диференційний ефект Джоуля-Томеона рівний нулю називається точкою інверсії.

Якщо початкова температура реального газу перед дроселюванням менша температури інверсії, то газ при дроселюванні охолоджується, якщо бльша, то газ нагрівається

Дослідження процесу дроселювання Ван- Дер-Ваальсового газу, а також дослідні дані з реальними газами показують, що реальний газ має безконечно велике число точок інверсії, які утворюють на р - T діаграмі інверсійну криву. Рівняння інверсійної кривої, якщо відомо рівняння стану реального газу , може бути отримано в явній формі із співвідношення

;

де а та b -постійні з рівняння (9.1).

При любому значенні тиску речовина має дві точки інверсії: одна знаходиться в області рідини, а друга в області перегрітої пари.

Температуру інверсії можна визначитичерез критичну температуру.

Ti=6,757Tkp,

Всі процеси дроселювання всередині кривої супроводжуються охолодженням речовини, а ззовні нагріванням.

12. Другий закон термодинаміки

12.1 Основні положення другого закону термодинаміки

Мжперетворенням теплоти в роботу і навпаки існує велика різниця: вся робота може бути перетворена в теплоту і навпаки, вся теплота не може бути перетворена вроботу.

Другий закон термодинамікидозволяє вказати напрям теплов ого потоку і встановлює максимально можливу границюперетвореннятеплотив роботу.

Суть другого закону термодинаміки вперше виклав Сади Карно. Він писав: "Всюди, де є різниця температур проходить виникнення рушійної сили. Рушійна сила тепла не залежить від агентів для її розвитку: її кількість виключно визначається температурою тіл, між якими в кінцевому рахунку проходить перенос теплоти Температура газу спочатку повинна бути як можливо вищою, щоб одержати значний розвиток рухомої сиди По тій же причин охолодження повинно бути як можливо нижчим Неможливо надіятись коли-небудь практично використовувати всю рухому силу."

В 50-х роках Клауіисом бугто дано формулювання другого закону термодинаміки у вигляді наступного постулату: 'Теплота, не може переходити від холодного тіла до більш нагрітого сама собою даровим процесом."

Одночасно з Клаузисом в 1851 р. Томсоном бугто сказано інше формулювання, наслідок якого такий: не вся теплота одержана від теплов іддатчнка можеперейтив роботу, алиш деяка її частина.

Значить, для одержання роботи необхідно мати джерело теплоти з високою температурою, або тепп овід датчик і джерело теплоти з низькою темпер атурою, або теплоприймач.

Робота в термодинамічних процесах можлива або в результаті підведення теплоти, або зміни внутрішньої енергії. При одноразовому циклі можна одержатиякусь визначену кількість теплоти. Для одержання заданої кількості теплоти цикл необхідно повторити. Отже для повторного одержання роботи необхідно в процесі стиску повернути робоче тіло в іючатковий стан (рисі 2.1). Якщо робоче тіл о розширюється по лінії 1,3,2, то робота рівна 1-3-2-4-5.

Повернення тіла в початковий стан може проходити по трьох кривих 2-3-1; 2-6-1; 2-7-1.

Цикл, в результаті якого одержується позитивна робота називається прямим циклом

Цикл, в результаті якого затрачується робота називається зворотним Цикл, який складається з врівноважених оборотних процесів називається оборотним В оборотному циклі робоче тіло повертається в точку 1 по лінії 2-3-1.

Дослідження любого оборотного циклу показує, що для його здійснення необхідно в кожній точці прямого процесу підводити тептоту від тепловіддатчиків до робочого тіла при безкінечно малій різниці температур і відводити теплоту такожпри безкінечно малій різниці температур.

В прямому термодинамічному циклі на шляху 1-3-2 тіло здійснює роботу L1 за рахунок гідведення тепгтоти і зміни внутрішньої енергії. На шляху 2-6-1 затрачуєтьсяпитома робота стиску L2 чисельно рівна пп. 426154, частина якої у вигляді питомої кількості теплоти q2 відводиться в теплоприймач, а друга витрачається на зміну внутрішньої енергії тіла.

Співвідношення між питомими кількостями теплоти і питомоюроботою визнач аєтьсяпершимзаконом термодинаміки

q1-q2=u2-u1+L

и2-u1=0 - оскільки початковий і кінцевий стан тіла співпадає.

Відношення питомої кількості теплоти, гкретвореної в позитивну роботу, до всієї кількості теплоти, підведеної до робочого тіла, називається термічним коефіцієнтом корисної дії прямого циклу

(12.1)

Зворотний цикл проходить в напрям проти годинникової стрілки. Робота розширення менша роботи стиснення. Такий цикл може проходити тільки при затраті роботи ззовні.

В зворотному циклі від теплоприймача відводиться питома кількість теплоти q2 і затрачаться питома робота L , яка переходить в рівну питому кількість теплоти, які разомпередаютьсятепловіддатчику-

q1= q2+L. (12.2)

Степінь досконалості зворотного циклу визначається холодильним коефіцієнтом.

(12.3)

Холодильний коефіцієнт показує, яка кількість теплоти віднімається від теплоприймачапризатраті одиниці роботи. Величина є може бути більшою 1.

12.2 Прямий оборотній цикл Карно

Кількість джерел теплоти може бути зменшена якщо на окремих у частках циклу теплота буде відводитись і підводитись при постійній температурі.

Здійснити оборотний цикл можна наступним чином: тепло підводиться до робочого тіла від тепловіддатчика при постійній температурі, і робоче тіло адіабатно розширюється до температури теплоприймача. Дальше в ізотермічному процесі проходить відвід теплоти від робочого тіла до нього. Замикаючим цикл п овинен бути процес адіабатного стиснення

За весь цикл Карно (рис. 12.3.1) до робочого тіла від тегшовіддатчика була підведена кількість теплоти q1 і відведена в теплоприймач питома кількість теплоти q2 .

Термічний ККД циклу

Підведена кількість тегшотипоізотермі 1-2 визначається так:

Абсолютне значення відведеної питомої кількості теплоти по ізотермі 3-4 буде становити:

.

Підставляємо знайдені значення в рівняння для термодинамічного ККД.

(12.4)

Для адіабатного процесу розшир енняі стиснення відповідн о маємо:

і

Звідси

або

Відповідно формула для визгачення термодинамічного ККД циклу Карно після скорочення приймає вигляд

(12.5)

Аналізуючи рівняння (12_5) можна зробити на ступні висновки:

термодинамічний коефіцієнт циклу Карно залежить тільки від абсолютних температур тепловіддатчика і теплоприймача;

термодинамічний ККД буде тим більшим, чим вища температура теплоприймача і нижча температура тептовіддавача.

12.3 Зворотний оборотний цикл Карно

В зворотному процесі (рис. 12.3.2) робоче тіло відводить тепло від джерела теплоти з нижчою температурою і віддає джерелу теплоти з вищою температурою. Для виконання та кого процесу необхідно затратити роботу L.

В зворотному процесі робоче тіло від т.1 розширюється до т.4 по адіабаті 1-4 без теплообміну з зовнішнім середовищем.

Температура Т1 зменшується доТ2

Потім розширення проходить по ізотермі 4-3 з підводом теплоти q2 , яка віднімається від джерела з низькою температурою Т2. 3-2 лінія адіабатного стиснення 2-1 - ізотермічний стиск з відводом теплоти до джерела з вищою температурою.

Робота стиснення більша роботи розширення на величину пл.14321 всередині замкнутої лінії циклу.

Теплота, яку одержує теплоприймач:

q1= q2+L

Характеристикою ефективності холодильних машин є холодигтьний коефіцієнт.

12.4 Властивості оборотних і необоротних циклів, математичний вираз другого закону термодинаміки

Розглян емо оборотний цикл

Із визначення термічногоККД слідує, що

а для оборотного циклу

Якщо прирівняти ці два вирази, то

або

Якщо рахувати підведену роботу позитивною, а відведену негативною, то

(12.6)

Відношення підведеної або відведеної теплоти до відповідної температури називається привединою теплотою Можна сформулювати так: алгебраїчна сума приведеної теплоти для оборотного циклу Карно дорівнює нулю

Це може бути використано і для любого оборотного циклу. Люоий довільний процес 1-2-3-4-1 може бути розглянутий як сума елементарних циклів Карно (рис 12.4.1), якщо цей цикл розбитий відповідними адіабатами.

Дня кожного елементарного цикла Карно і для всього цикла. Таким чином, - є повний диференціал дня деякої функції, яка залежить від даного стану тіла. Такою функцією, єентропія. Отже:

Рівняння представляє собою математичний вираз другого закону термодинаміки для довільного оборотного циклу і називається першим інтегралом Клаузиса. Для необоротних процесів ηtнеобор <ηtобор

або

; ;

Поскількн є величина від'ємна, то дпянеоборотнихпроцесів

(12.7)

Для робочого тіла, яке здійснює замкнений цикл ds = 0. Отже,

Нерівність представляє собою математичнийвираз другогозакону термодинаміки для довільного необоротного циклу і назива ється другим інтегралом Кпаузіса. .Якщо оо^єднати дві формули то одержимо:

12.5 Змінна ентропії є оборотних і необоротних процесах. Закон Гюі-Сподоли

Розглянемо ізольовану термодинамічну систему яка складається із джфела теплоти з температурою Т1 холодильника з температурою Т2 <Т1 і робочого тіла, яке здійснює оборотний цикл Карно між джерелом теплоти і холодильник ом

Робота, яку виконує система

Встановимо між джерелом теплоти Т1 і робочим тілом джерело теплоти Т1’ (рис.12_5.1). Ця ж сама кількість теплоти спочатку в необоротному процесі від джерела з температурою Т1 передається джерелу з температурою Т1’, а дані в оборотному процесі робочому тілу.

Тоді робота, яку вік онає система:

Зменшення роботи із-за необоротності процесу передачі теплоти від джерела з температурою Т1 до джерела з температурою Т1’

(12.8)

Рівняння (12.8) називається рівнянням Гюі-Сто доли.

Таким чином зменшення роботоздатності ізольованої термодинамічної системи (в результаті протікання в ній необоротних процесів пропорційно збільшенню в ній ентропії). Іншими словами ентропія є мірою деградації енергіїв ізольованій термодинамічній системі.

Енергія системи, залишаючись незмінною кількісно (Q1 =const), погіршується якісно, переходячи в тепл оту низькотемпературного потенціалу.

Другий закон термодинаміки по суті є статистичним законом, який характеризує необоротність процесів, яа протікають в кінцевих ізольованих системах.

13. Термодинамічні основи компресора

Компресором називається машина, яка служить для стиснення газу і пари і транспортування його до споживача.

По принципу стиснення робочого тіла в компресорі ці машини класифікуються на дві основні групи: перша -поршневі, гвинтові і ротаційні, друга -лопатеві.

В першій групі машин стиснення робочого тіла здійснюється шляхом зменшення його об'єму, в другому - шляхом руху потоку по канапах змінного січення

Задачею термодинамічного аналізу компресора є визначення роботи, яка витрачається на стискання робочого тіла при заданих початкових і кінцевих параметрах.

На рис.13.1. показана принципова схема одноступеневого компресора і теоретична індикаторна діаграма , яка показує залежні сть тиску робочого тіла в циліндрі від ходу поршня на протязі одного оберту поршневого вала, або від змінного обєму робочого тіла в циліндрі. При русі поршня від крайнього лівого положення в праве, в циліндрі машини через всмоктуючий клапан δ поступає газ, який при наступно му русі сграва наліво (при закритих клапанах а і b ) стискається від тиску р1 до р2. При досягненні газом тиску р2 відкривається випускний клапан b і тоді при подальшому русі поршня справа наліво буде проходити процес виштовхування газу із щліндра компресора в нагнітальний трубопровід. Коли поршень прийде в крайнє ліве положення, відкривається впускний клапан і процес починається знову.

Рис.13.1. Принципова схема одноступеневого поршневого компресора і теоретична індикаторна діаграма.

Робота Lk, яка витрачається в компресорі за один оберт вала рівна сумі робіт всмоктування газу в циліндр L0,1 стиснення його в циліндрі L1,2 і виштовхування газу з циліндра L2n тобто

Lk= L0,1+ L1,2+ L2n=-Lтех

де Lтех-технічна робота компресора.

о

оскільки V1>V2 на індикаторній діафамі робота L1,2 позначається площею під кривою процесуі-2;

Оскільки в процесі всмоктування тиск постійний; на індикаторній діаграмі робота L0,1 позначається площею під прямою к-1

Робота L2n означ аєть ся площею підпрямою 2-п.

На індикаторній діаграмі технічна робота компресора позначається площею

Якщо стискається ідеальний газ, то робота стиснення газу впопітропному процесі

а відповідно технічна робота компресора

В рv- діаграмі робота може бути представлена площею, обмеженою кривою процесу стискання 1-2, початковою і кінцевою абсцисами і віссю ординат (рис 13.2). Процес стискання газу в циліндрі компресора проходить настільки швидко, що теплообмін його через стінку малий і процес мсснта рахувати адіабатним (п = к). Якщо компресор має теплову сорочку, яка забезпечує ізотермічне стиснення газу в циліндрі п = 1, то мінімальна технічна робота буде при ізотермічному стиснені.

Рис 13 2 Порівняння роботи адіабатного, політропного і ізотермічного стискання в компресорі

Реальний процес стиснення газу гредставляє собою політропу, яка знаходиться міжадіабатоюі ізотермою

Кількі сть теплоти, яка відводиться від 1 кг ідеального газу в процесі його стисненняв циліндрі компресора

Дійсна індикаторна діаграма стиснення газу в щліндрі представлена на рис. 13.3

Продуктивність реального компресора за один оберт валу в результаті наявності шкідливого простору буде рівна Vд =V1-V4-дійсному об'єму газу, який поступає в циліндр. Відношення шкідливого об'єму газу Vо до корисного об'єму цигтіндра Vкор називають коефіцієнтом шкідливого простору і позначають Ео. Ця величина залежить від конструкції поршневого компресора і коливаєтьсявмежах 0,05...0,1.

Відношення дійсного об'єму газу Vд, який засмоктується в цилівдр до корисного об'єму циліндра Vпов називається коефіцієнтом об'ємного наповнення циліндра і позначається X

Рис 13 З Дійсна індикаторна діаграма стиснення газу в компресорі

14. Котельна установка

Пристрої, які служать для одержання пари або гарячої води гідвищено го тиску за рахунок теплоти, яка виділяється при спалюванні палива, або теплоти, яка підводиться від постійних джерел теплоти, щзиваєть ся котельним агрегатом. Вониподіляютьсяна парові і водонагрівні котли. Котельні агрегати, які використовують теплоту газів,що відводяться із печей, або інших гродуктів різних технологічних гроцесів,називаютьсякотлами-утилізаторами.

Котельні агрегати оснащують додатковим обладнанням, яке служить дгтя підготовки і подачі палива, подачі повітря, очистки і подачі води, Еідведення продуктів згорання палива і їх очистки від попелу і токсичних домішок, відведенняпотелошлакових залишків палива.

Комплекс пристроїв, які вкалючають в себе котельний агрегат і допоміжне обладнання назива ється котельною установкою.

Джерелом теплоти длякотельнихустановок є природне і штучне паливо.

Технологічна схема котельної установки показана нарис. 14.1.

Паливо з вугільного складу після подрібнення подається конвейєром в бункер сирого вугілля 1, з якого подається в систему пиле приготування, яка має вуглеподрібнювальний млин 2. Пилеподібне паливо за допомогою спеціального вентилятора 3 транспортується по трубах в повітряному потоці допальників 4 пі чкикотла 5, який знаходиться в котельній 14. До пальників підводиться такожвторннне повітря дуттєвим вентилятором 13 через повітрепідігрівач котла 10. Вода для живлення котла подається в його барабан 7 живильним насосом 12 з баку живильної води 11, який має деаераційний пристій Перед подачею води в барабан вона підігрівається в водяному економайзері 9 котла. Випаровування води проходить в трубній системі 6. Суха насичена пара із барабану поступає в пароперенагрівач 8 потім направляється до споживача

Рис 14 1 Технологічна скема котельної установки: а-водяний тракт, б-перегріта пара, в-паливний тракт, г-шлях руку повтря, д-тракт продуктів згорання, е-шляк попелу і шлаку, 1-бункер топ лив а, 2-вуглерознольний млин, 3-нлинний вентилятор, 4 -пальник, 5-контур шчки і газ ох одів котельного агрегата, 6-екрани пічки, 7-ЄараЄан, 8-пароперегрівач, 9-водяний економайзер, 10-повітр є підігрів ач, 11-бак запасу води з деаераційнин пристроєм, 12-живильний насос, 13-вентилятор, 14-контур будівлі котельної (приміщення котельного відділення), 15-попеловлювлюючий пристрій, 16-димоедсмоктувач, 17-димова труба, 18-насоснадля вдкачкипопелошлакової пульпи

Паливно-повітряна суміш, яка подається пальниками в гічкову камеру паровогокотла згорає, утворюючи вис окот емпературний (1500°С) факел, який випромінює тепло на труби 6, розміщені на внутрішній поверхні стін пічки. Це - випаровувальні поверхні нагріву, які називаються екранами. Віддавши частину теплоти екранам, пічкові гази з температурою біля 1000°С переходять через верхню частину заднього екрану, труби якого тут розташовані з великими проміжками (ця частина труб називається фестонними) і омивають пароперегрівач.

Поті м продукти згора ння рухают ься ч ерез в одяний економайз ер, повід трелі ді грів ач і покидають котел з температурою, яка перевищує 100°С Відведені гази очищаються від попелу в попелоуловлювачі 15 і димососом 16 викидаються в аг мо сферу через димову трубу 17.

14.1 Паровий котел і його основ ні елементи

Найпростішим паровим котлом є простий паровий котел, виконаний в ввді горизонтального б ара ба ну з пічкою під ним (рис. 14.1.1). Стінки барабану були одночасно і поверхнею нагріву. В подальшому для збільшення поверхні нагріву йшли по двох парямках. В одному випадку безпосередньо в водяному просторі барабану розміщались великі і мані труби, при цьому великі були одночасної пічкою (котли з жаровими трубами). В другому випадку до барабану приєднувались додаткові зовнішні тр^би -кип'ятильні пучки, заповнені водою (водотрубні котли). В котлах цього типу рух середовища через пучок кип'ятильних тр^б забезпечувався підйомом легкої пароводяної суміші, яка витісняється поступаючою з барабану більш холодною водою, яка не має бульбашок пари.

Сучасний паровий барабанний котел складається із пічкової камери і газоходів, барабану, поверхонь нагріву, повітрегідігрівача, які знаходяться гід тиском , з'єднувальних паропров одів і трубопроводів. Опускні труои більшого діаметру з'єднують барабан з колекторами , з яких вода поступає в екрані труои (розміщені в пічці). Барабан, опускні труби, колектор, екрані труои утворюють циркуляцйний контур. В барабані проходить розділення пари і води.

Походу димових газів може бути розміщений конвективний пучок труб, водяний економайзер (для підігріву води) і повітрепіді грівач. Ці поверхні нагріву називаються хвостовими. Температура димових газів після пароперегрівачазннжуєтьсявід500-700°С до 100-120 °С.

Вся трубна система і барабан котла підтримуються каркасом, який який складається із колон і поперечних балок. Пічка і газоходи захищені від зовнішніх тепловтрат обмурівкою - шаром вогнетривких і ізоляційних матеріалів.

15. Паливо. Процеси горіння

15.1 Основні характеристики

Паливом, називаються речовини, які використовуються для одержання значної кількості теплоти.

Волога ділиться на два види: повітряну , яку відводять при кімнатній температурі і гігроскопічну яка відводиться в сушильній шафі при температурі 102-105 °С Відповідно

Паливо, з якого відведена волога, називається абсолютно сухим, або аналітичною пробою. Так як робоче паливо відрізняється від аналітичної проби вмістом то

Склад аналітичної маси палива

С0+ Н0 + О0 + N0 + Sn0+Аа +W0=100%

Найбльш важливою і стабільною є горюча маса. .Якщо відомо склад горючої маси зольність вологість , то можна знайти елементарний склад робочого палива

Важливою характеристикою палива є теплота згоряння. Теплота згорання - це кількість теплоти, яка виділяється при повному згорянні одного кілограма твердого палива і при охолодженні продуктів горіння до початкової температури процесу.

В паливі є три горючих компоненти - С, Н,S.

Розрізняють вищу і нищу теплоту згоряння палива. Різниця між ними полягає в тому, що в вищу теплоту згорання палива входить кількість теплоти, яка може бути виділена прнконденсаціїводяноїпарн, яка знаходиться в гродукгахзгоранняпалива. Тобто

;

Де r-питома теплота пароутворення;

Gn - маса пари, кг.

В відповідності із реакцією горіння

2Н2 + О2 =2Н2О.

При згоранні 1кг водню утворюється 9 кг водяної гащ плюс кількість вологи яка міститься в паливі.

Питома теплота пароутворення r = 2500кДж/кг. Відповідно:

Теплота згоряння палива залежить від температури, при якій проходить процес спалювання, але як правило подають дані при температурі 20°С.

Експериментально теплоту згорання визначають шляхом спалювання в калориметрах.

Для порівняння енергетичної вартості різних видів палива вводять поняття умовного палива, теплот а згорання як ото прийнята рівною

Qуіл = 29,33Дж/кг .

Баластом робочого палива є сірка,попіл і волога.

Сірка хоча й горить входить в склад баласту оскільки утворює шкідливі речовини.

Склад сірки в торфі, дровах, малоефірнистій нафті - 0,3-0,4%, антрациті, кам'яному і бурому вугіллі 2-6%.

Погіл, який утворюється після горіння має вигляд сипучої маси або сплавлених кужів -шлаку. При температурах горіння попіл розм'якшується, а поті м плавиться.

Плавкість попелу х аракгеризуєть ся тема ературами початку

Деформації t1,розм'якшення t2, рідкого стану t3.

В залежності від температури рідкого стану попелу розрізняють

Легкоплавкий - tз <1200°С

Середньоплавкий- tз <1200ч 14000С

Тугоплавкий – t3 >1400°С.

Вихід ляетких речовин. При нагріві палива без доступу повітря проходить термічний розклад палива з виділенням летких речовин і твердого нелеткого залишку.

В складлеткихречовинвходять гази: СО2,СО,СтНт, Н2S.

В склад нелеткого залишку входять вуглець С (кокс) і попіл А

Вихід летких речовин коливається від 4% для антрациту, до 85% для нафти.

Процес сухої перегонки при t = 1050-1100°С називається коксуванням.

Характеристики окремих видів палива. Торф - найбільш молоде паливо. Вихід летких речовин 70%, вологість = 40...50%, нижча теплота згорання =8,37...10,47 МДж/кг

Буре вугілля використовується як енергетичне паливо місцевого значення. Середній склад: С°-68%; Н° -5,5%; О0 - 25,0%; N0 -1,0%

Нижча теплот а згорання = 27200 kДж/кг

Характеризується високою сірчистістю, попільністю АР = 10 25 % і вологістю Wр=30%.

Кам'яне еугтля - об'єд ну є багато видів палива. Д0 числа загальних ознак, які відрізняють кам'яне вугілля від бурого і торфу відносяться: відсутність видимих неозброєним оком слідів рослинних залишків, мала гігроскопічність W0 <10%, загальна лужна реакція продуктів сухої перегонки, висока теплота згоряння.

В основу класифікації покладений вихід летких речовин VГі характеристика нелеткого залишку. Марки палива:

Д-довгополум'яний, Г- газовий, ГЖ— газовий жирний,Ж-жирний, КЖ-коксовий жирний, К— коксовий, ОС-отощений сгікниц СС- слабосгікний, Т— тощий, ПА-напівантрацит, А-антрацит.

Кам'яне еугтпя класифікується також по розміру кусків, мм.

К- крупне (50 -100), О- оріх (25- 50),М- мілке (13-25), С- сім'я (6-13), Ш— штиб (< 6), Р— рядовий (не обмежений).

Горючі спанщ представляють собою суміш сапропелітових (нафтоподіоних) продуктів, утворених в результаті розкладу багатих жирами водних мікроорганізмів, які закінчили свою життєдіяльність з мінеральними речовинами, які попалив сапропелітові накопичення в результаті обвалів.

Характеризуються високим виходом летких речовин (до 85%), високим вмістом водню (цо 10%) і високою попільністю (до 10%). Нижча теплота згорання =5,87 10 МДж/кг .

Нафта - складна система вуглеводів різного складу. Розрізняють 6 її типів. Основні із них - метанова і нафтонова.

Нафту класифікують по вмісту сірки (малосірчиста <0,5%, висок о сірчиста <3,5%)9 смолистих речовин і по температурі застигання масляної фракції (малопарафіниста tзаат <-16°С, парафіниста tзаат -15 до + 20°С, високопарафіниста tзаат >20°С).

Для енергетики використовують тільки відходи нафтопереробної промисловості - мазути.

Теплота згоряння мазуту =39200КДж/кг. Важливою характеристикою мазутів є їх відносна в'язкість, виражена в градусах Енглера. В залежності від цього мазути позначаються марками 40,100,200.

Газоподібне паливо. В котельних установках використовується природній і доменннйгаз.

Склад газоподібного палива представляють в об'ємних відсотках горючих інегорючих газів.

= 128СО2 +107H2 + 355СН4+628CmHn

Природні гази поділяються надві групи: сухі гази чисто газовихродовищ і попутні "жирні гази", які супутні нафтодобуванню. Теплота згорання сухого природного =35,52 35,61 МДж/кг

15.2 Горіння палива

Горінням, називають процес швидкого окислення горючого у висок отемпературн їй зоні.

Температура запалювання - це температура, до якої необхідно нагріти паливо і необхідне для його горіння повітря, щоб почалось інтенсивне з'єднання елементів палива з киснем повітря.

Температура запалювання становить для кам'яного вугілля 300- 350 С, метану 650-7500С дров225-280°С, антрациту 650-700°С.

Дня газоподібних палив існує межа, за границями якої горіння палива неможливе.

Основним джерело м теплоти для підігріву горючої суміші до температури запалювання є теплота продуктів згоряння

При спалюванні твердого палива велике значення має час згорання, який впливає на розміри пічкової камери

τг=τд+ τк

де τд - час дифузійних проц есів;

τк час на кінетичні процеси виконання хімічних реакцій.

Швидкість протікання хімічних реакцій пропорційна концентраціям реагуючих речовин і визначається за формулою:

Де с1 і с2-концентрації реагуючих речовин;

к -постійна реакції.

Постійна реакції, яка залежить від природи реагуючих речовин оцінюється формуггою Арреніуса:

де Е- енергія активації, кДж/кмоль ;

R-універсальна газова стала;

к0 - визначається експериментально.

Енергія активації необхідна для послаблення і руйнування зв'язків.

Для газових сумішей Е = 85 -170 кДж/кмоль.

15.3 В шпроти повітря для горіння палива

Мінімальна кількість повітря необхідна для повного згоряння палива називається теоретичною кількістю повітря. її можна визначити використовуючи реакції горіння:

С + О2=СО2S+О2=8О2

2С+О2=2СО 2Н2 + О2 = 2Н2О

СО + О2 = 2СО2 СН4 + 2О2 = СО2 + 2Н2О

Наприклад, ізреакцїповногозгорання вуглецю ввдно, що для повного згорання вуглецю масою 2кг необхідно 32кг кисню і в результаті цього утвориться 44кг СО2.

Тобто для згорання 1кг С необхідно кг О2. При кількості вуглецю Сp

в 1кг палива потрібно кг О2=

Загальна кількість кисню визначається за формулою:

Враховуючи, що кисню в повітрі 0,231%, а також питому вагу сухого повітря 1,293кг/м3, одержима ,

V0=0,0889(Cp+0,375Sp)+0,265Hp-0,0333Op ,м3/кг

Відношення дійсної кількості повітря до теоретично необхідної, назвається коефіцієнтом надтіищ повітря:

Цей коефіцієнт залежить від виду спалюваного палива, конструкції пічки і способу перемішування палива зповітрям

16. Аналіз циклів теплових двигунів. Двигуни внутрішнього згорання

Теплові установки поділяють на теплові двигунн, в яких здійснюється прямнй цикл з віддачею роботи зовнішньому споживачу і на холодильні установки, які працюють по зворотньому циклу проти годинникової стрілки з затратою роботи, яка підводиться ззовні.

В свою чергу теплові двигуни можна розділити на три основні групи: двигуни внутрішнього згорання, в яких процес підводу теплоти і перетворення її в роботу проходить в середині циггіндра двигуна; газотурошні установки і реактивні двигуни, в яких процес горіння палива є ча ситною робочого процесу, паросилові установки, де теплота надається робочому тілу в окремому агрегаті - паровому котлі, а перетворення теплоти в роботу - впаровійтурбіні.

Огільним дггя циклів теплових двигунів перших двох груп є використання в якості робочого тіла газоподібних продуктів горіння, які на протязі щклу знаходяться в одному і тому ж стані і при відносно високих температурах їх можна вважати ідеальним газом Характерною рисою теплових двигунів третьої груги є використання таких робочих тіл, які в циклі мають фазові зміни і гідчиняються законам реальних газів.

Аналіз циклів теплових двигунів гроводягь в два етапи:

Спочатку аналізують теоретичний (оборотний), а потім реальний (необоротний).

Степінь досконалості теоретичних циклів повністю характеризується величиною термічногоККД

ηt=lo/qi=(q1-q2)/q1=1-q2/q1 (16.1)

де q1-кількість гідведеноїтеплоти;

q2 -кількість відведеної теппоти.

Ефективність реального необоротного циклу оцінюється внутрішнім ккд.

ηi=li/q1 (16.2)

де lі, -дійсна робота в необоротному циклі.

Для встановлення степеня необоротності циклу використовують поняття відносного внутрішнього ККД, який представляє собою відношення дійсної роботи li до теоретичної lо:

η0i=li/l0 (16.3)

Коефіцієнт показу наскільки реальний цикл менш досконалий, ніж теоретичний.

ηi=ηt∙η01

Крім необоротних втрат, які враховує внутрішній ККД, в теплосиловій установці є ряд інших втрат (втрати теплоти в навколишнє середовище, на тертяв підшипниках).

Відношення дійсної корисної роботи lB відданої споживачу до кількості затраченої теплоти q1 називається ефективним ККД:

ηB=lB/q1 (16.4)

В реальних необоротних процесах (циклах) теплових двигунів спостерігається необоротність двох видів: викликана наявністю тертя і завихрення в потоці робочого тіла і обумовлена наявністю кінцевої різниці темпер атур.

Оцнка ефективності циклів теплових двигунів методом ККД враховує втрати, викликані внутрішньою необоротністю, але не враховує втрат, викликаних кінцевою різницею температур в процесі підводу і відводу теплоти. Зовнішня необоротність приводить до втрати роботоздатності теплоти, тобто,

до невикористання її температурного рівня

В теплових установках найбільша зовнішня необоротність має місце в процесах підводу т еплоти від верхнього джерела до робочого тіла, температура якого значно менша температури джерела теплоти 3 термодинамічної точки зору необхідно завжди прагнути підвищигитермічнийККД.

16.1 Цикли двигунів внутрішнього згорання

В двигунах внутрішнього згорання (д.вз.) в результаті згорання палива в циліндрі зростає тиск продуктів згорання, який передається на поршень, поступальний рух якого за допомогою кривошипно-шатунного механізму, перетворюється в обертовий рух колінчатого валу. Характер дійсних процесів в цих двигунах відбиває індикатор на діаграма.

В циклі зпідведенням теплоти поізохорі (карбюраторному двигуні) при рул поршня від верхньої мертвої точки (ВМТ) до нижньої мертвої точки (НМГ) за рахунок створення розрідження і при відкритому всмоктуючому клапані в циттіндр із змішувача (карбюратора) гюстугвє горюча суміш, яка складається із парів бензину і повітря. Цей процес всмоктування називається першимтактом роботи дв.з- тактомвсмоктування(оа) (рис 16.1.1).

При зворотному русі поршня від НМТ до ВМТ всмоктуючий клапан закритий і горюча суміш разом з газами, які залишитись в цигтіндрі від попереднього циклу, піддається стисненню (ас). Цей процес утворює другий такт роботи двигуна - такт стиснення. Процес стиснення проходить по політропі, середній гюказник якої n1 =1,25 -1,35.

Рис 16.1.1 Індикаторна діаграма карбюраторного д.в.з. 1- всмоктуючий клапан; 2-свіча; 3-випускний клапан.

В кінці такту стиснення за допомогою свічки запалювання в циліндр подається електрична іскра, від якої загоряється стиснута робоча суміш. В першу чергу загоряються гари робочої суміші, які знаходяться ошя електродів свічки. Фронт полум'я зі швидкістю 40-50 м/с поширюється по напрямі до днища поршня Не дивлячись на таку високу швидкість згорання, поршень встигаєвсе ж відійти по напрямі до НМТ, в результаті чого процес згорання в рv - координатах (се) буде позначатися не вертикальною прямою, а похилою,близькою доізохори.

В точці г закінчується процес види мого згорання, на протязі якого встигає згоріти приблизно 80-85% всього палива, яке знаходиться в робочій суміші, і тому в цій точці буде максимальний тиск. Страва точки z (8-12% по куті обертання колінчатого валу) знаходиться і максимальне значення температури при згоранні. Робоча суміш догоряє на початку процесу розширення, починаючи від точки z і продовжується до моменту, поки не почне відкриватися випус кний клапан.

Закінчується процес розширення в точці b (НМТ). Сукупність процесів сг і zb - третій такт роботи двнгуна, який носить назву робочого ходу. При русі поршнявідНМТ до ВМТ через відкритий випускний клапан продукти згорання

виштовхуються із циліндр а. Четвертий такт роботи двигуна називається тактом випуску.

Індикаторна діаграма двигуна, в якому згорання палива проходить при постійному тиску (дизелі) показана на рис. 16.1.2

Рнс. 16.1.2 Індикаторна діаграма дизеля. 1 -всмоктуючий клапан; 2 -форсунка; 3- випускний клапан.

Принципова відмінність дизеля від карбюраторного двигуна полягає в тому, що на першому такті в циліндр поступає повітря. На другому такті повітря стискається і коли поршень підходить до ВМГ (за 25-15° по кугу обертання) то через форсунку, розміщену в головці цилівдра, вприскується розпилене рідке паливо під тиском приблизно 200-300 бар. Прн дуже короткому часі, який відводиться на процес вприскування, перемішування і згорання процес протікає з деяким підвищенням тиску.

Для термодинамічного аналізу процесу дійсні процеси заміняють оборотними термодинамічними процесами, атакожвважають, що в циліндрі на протязі всього циклу кількість і склад робочого тіла (газу) незмінні.

Теплоємність робочо го тіла приймається незалелмою від температури, а самеробоче тіло розглядається як ідеальний газ.

З термодинамічної точки зору ідеальний двигун внутрішнього згорання, якілюоийіншнй двигун, повинен би працювати за циклом Карно. Але двигун, в якому підведення і відведення теплоти проходить по ізотермі створити не вдалось. Практично найбільш зручним виявилось підводити теплоту по ізохорі або ізобарі або змішаним способом - ізохорі і ізобарі. Відведення теплоти завжци проходить по ізохорі.

В відповідності з цим розроблено три теоретичних цикли:

з підведенням теплоти при v=const

з підведенням теплоти при р = const;

зі змішаним підведенням теплоти.

Цикл з підведенням теплоти при постійному об'ємі (v=const) є прототипом робочого процесу в двигунах з постороннім запаленням (карбюраторні двигуни)рис 16.1.3.

Особливістю такихдвигунів є стиснення горючої суміші.

Цикл складається із двох адіабат і двох ізохор

Рис 16.1.3 Цикпз підведенням теплоти поізохорі в РV i TS-діаграмах Адіабата 1-2 відпжідає стисненню горючої суміші, 2-3 - ізохора згорання, 3-4 - процес адіабатного розширення. В ізохорному процесі 4-1 від газу відводиться теплота q2.

Цикл з ізобарним підведенням теплоти (р=const) складається із двох адіабат, ізобарні ізохори (дизельні двигуни) (рис.16.1.4).

В цих двигунах спочатку стискається по адіабаті 1-2 чисте повітря, в результаті чого його температура підвищується до потрібної температури самозагорянняпалива. Потім в ізобарному процесі 2-3 проходить вприскування і горіння палива (підведення теплоти q). Дальше проходить адіабатне розширення 3-4 і по тім ізохорний випуск 4-2.

Цикли із змішаним підведенням теплоти характерний для безкомпресорних двигунів важкого палива з внутрішнім суміш еутворенням.

Спалювання палива в таких двигунах спочатку проходить по лінії v=const ( зпідвиїценнямтиску, а потім при постійному тиску (рис 16.1.5).

Дня характеристики циклів двигунів внутрішнього згорання в нкорн ст овують ся п о няття:

v 1/v2=ε - степінь стиснення;

р3/p2=λ - стегінь підвищення піску;

v4/v3=ρ -степінь попереднього розширення.

Температуру газу в вузлових точках циклу можна визначити через почапсову температуру, якщо прийняти робоче тіло за ідеальний газ. Дня адіабатного процесу 1-2:

T2=T1εk-1

Для із охорного проц есу 2-3:

T3=λT2=T1εk-1λ

Для ізобарного процесу 3-4

T4=ρT3=T1εk-1λρ

Для адіабатного процесу розширення4-5:

Звідси

T5=T4ρk-1/ εk-1= T1λρк

Кількість підведеної і відведеної теплотн в циклі зі змішаним підведенням відповідно складе:

q1=q1+q2=cvm(T3-T2)+cpm(T4-T3)=cvm T1εk-1:[(λ-1)+kλ(ρ-1)]

q2=cvm(T5-T1)=cvmT1(λρк-1)

Тоді термодинамічний ККД циклу зі змішаним підведенням теплоти

(16.5)

З цього виразу можна зробити висновок, щотермічнийККД збільшіться іззбльшенням степені стискування ε і залежить від λ і ρ.

При ρ=1 цикл із змішаним підведенням теплоти перетворюється в цикл із ізохорним підведенням. Термічний коефіцієнт буде рівний

(16.6)

а при λ=1 в цикл з ізобарним підведенням теплоти. Дня цього циклу одержима

(16.7)

16.2 Порівняння циклів

Із порівняння (16.7) і (16.6) ввдно, що при однакових степенях стиску цикл з ізохорним підведенням теплоти має більший ККД чим цикл з ізобарннм підведенням. Але практично двигуни з ізобарннм підведенням теплоти мають більш високий ККД, чим цикл з ізохорним підведенням. Двигуни з ізобарним підведенням теплоти мають більш високу степінь стиснення, тому вони більш економічні, чим двигуниз ізохорним підведенням

Тому доцілшо порівнювати ці цикли при однакових кінцевих тисках і температурах, тобто, в умовах однакових допустимих термічних і механічних напруг (рис. 16.2.1).

На рисунку показані цикли з ізобарним і ізохорним підведенням теплоти в одному і тому ж інтервалі температури

Рис. 16.2.1 Порівнянняцнклівз підведенням теплоти по ізохоріі ізобарі в ТS -діаграмі: а- при однакові й степені стиснення; б -при однаковій максимальній температурі циклу.

Як видно з графіку середня температура підводу теплоти Т1ср в циклі з p=const більша, чим в циклі з v=const тому ККД циклу при p=const вищий, чим ККД циклу при v=const.

З цього порівняння виходить, що для кращого використання теплоти q1, доцільно частину її q1’ надати при v=const до моменту одержання в двигуні допустимих максимальних тисків, а другу частину q1’’ надати при p=const (. Тобто д.в.3. працює по щклу зі з мішаним підведенням теплоти.

17. ГАЗОТУРБІННІ УСТАНОВКИ (ГТУ)

Можливість отримання значної потужності в одному агрегаті (до 100 тис. кВт і вище) внаслідок відсутності інерційних зусиль від мас, що рухаються зворотньо-поступально, і більш повного розширення продуктів згорання (до тиску зовнішнього повітря), атакожмалі габарити і низький розхід мастила та охолоджуючої рідини зумовиш розвиток газотурбінних установок в різних галрях народного господарства і особливо в авіації в зв'язку з створенням реактивних двигунів. Останнє вдалося здійснити завдяки використанню сугасних досягнень аеродинаміки і металургії, бо практична реалізація цгкла газотурбінної установки стає економічно вигідною лише при високих температурах робочого тіла (700-900°С).

Газотурбінні установки можуть працювати по їдклам зі згоранням при постійному об'ємі і при по стінному тиску. Практикою газотурбобудування було доведено, що найкращі перспективи розвитку мають газотурбінні установки, що працюють по циклу зі згоранням при p=const.

Рис 17.1 .Принцистова схема найпростішої газотурбінної установки 1 - газова турбіна; 2 - повітряний компресор; 3 - регенератор; 4 -камери згорання; 5 -паливний нас ос; 6 - піковий двигун.

Принципова схема найпростішої газотурбінної установки зі згоранням при p=const показана на рис. 17.1. Робота установки протікає наступним чином: пусковий двигун (найчастіше поршневий д в.з. або електродвигун) через з'єднувальну муфту розкручує вал турбіни і барабан осьового компресора. Комстресор починає засмоктувати повітря з атмосфери, стискає його і направляє в регенератор (повітрепідігрвач). В регенераторі повітря нагрівається за рахунок тепла відпрацьованих газів, що виходять з турбіни. Підігріте повітря по трубопроводу поступає в камеру зговання. Сюди ж паливний насос через форсунки подає рідке паливо. Паливо згорає неперервно при p=const

Продукти згорання направляються по трубогроводу до сопел газової турбіни, звідки виходять звеликою швидкістю (до 1000м/сек) і попадають на лопатки робочого колеса, віддаючи їм більшу частину своєї кінетичної енергії, за рахунок якої і отримується механічна енергія обертання вала турбіни. Частина цієї енергії витрачається на гривід компресора і паливного насоса (пусковий двигун вимикається) а решта знімається з валу у вигляді ефективної потужності М9 що служить для приводу машини-зас обу.

Відпрасовані гази по виході з лопатевих каналів робочих коліс турбіни направляються в регенератор, де віддають частину свого тепла на підігрів повітря, що проходить з компресора в камери згорання. Камера згорання неперервно з'єднується з повітряним і гвливним трубопроводами і трубопроводом, що служить для відводу продуктів згорання. Цим самим забезпечується неперервний процес горіння палива припостійному тиску.

Відомо, що для термодинамічного дослідження циклу такого газотурбінного агрегата потрібно ідеалізувати процеси, що протікають в ньому, рахуючиїхзворотніми. Дляцього дійснийпроцесроботизаміняють замкнутим і припускають, що в ньому приймає участь незмінна кількість робочого тіла. Розглянемо спочатку такий ідеальний цикл без регенератора, зобразивши його в рv і ТS -діаграмах (рис 172). В цьому циклі робоче тіло піддається стиску по адіабаті 1-2, потімвід безкінечного ряду зовнішніх джерел проводиться тепло по ізобарі 2-3; в подальшому відбувається розширення по адіабаті 3-4 і,

нарешті охолодження робочого тіла q2 протікає поізобарі 4-1.

Термічний КК.Д цикпа газотурбінної установки з згоранням при p=const може бутивизначенийзвідношеннят

.

Графічно корисна робота А0 вимірюється площею 12341, рівною різниці між площами 45634 і 15621. Перша з них (площа 45634) вимірює роботу т^роши Ат, а друга (площа 15621) вимірює роботу Аок, затрачену на стиск 1кг повітря від р1 до р2, тобто корисна робота газотурбінної установка дорівнює різниці повної роботи газової турбіни і теоретичної роботи компресора:

А0= Ат - Аок

Звідси

Оскільки температура відпрацьованих газів Т4 вище, ніж температура повітря на виході з компресора Т2, то частина тепла, що віддається при охолодженні газів в процесі 1-4 може бути передана в регенератор дгтя нагрівання повітря, що поступає в камеру згорання В Тs -діаграмі (див. рис. 17.2) нарів повітря в регенераторі відображається гроцесом 2-2', і тоді кількість тепла, що отримує робоче тіло від гарячого джерела, буде вимірюватися площею 2'3572', котра менша від площі 62356, що визначає q1 без регенератора, а це, природно, буд є збільшувати ККД циклу, дійсно:

без регенератора

з регенератором

але так як площа 2'3572'<площі23562,то ,

Очевидно, що теоретично максимальна температура підігріву повідря в регенераторі Т2 = Т4 в цьому випадку степінь регенерації σ=1. Степенем регенерації називається відношення кількості тепла, отриманого повітрям при проходженні через регенератор до максимально можливої кількості тепла, яке могло би отримати повітря в регенераторі, жон воно нагрівалось до температури відпрацьованих газів Т4. В діючих установках степінь регенерації о складає зазвичайО.6-0,75.

Дійсний цикл газотурбінної установки відрізняється від теоретичного наявністю втрат на тертя і вихороутворення в турбіні і компресорі (цикл 12а34а1 в Тs - діаграмі на рис 17.2) ці втрати уточнюються відносним внутрішнім ККД турбіни ηОіТ адіабатнім ККД компресора – ηАД і тоді внутрішній ККД такого дійсного цикла складає

Найбільш ефективними методами підвищення економічності газотурбінних установок являється застосування регенерації таїла, ступінчатий процес згорання,перехід назамкнутийі напівзамкнутийциклроботиі інші.

18. Цикли паросилових установок (псу)

Теплові паросилові установки дають біля 80% енергії, яка виробляється в країні. Принципова схема паросилової установки показана на рисі 8.1.

В паросилових установках продукти згорання палива безпосередньо не приймають участь в робочому циклі, вони є тільки джерелом теплоти, а робочим тілом служить пара, найчастіше це водяна пара. Волога насичена пара із котла 1 поступає в пароперегрів ач 2. де за рахунок теплоти димових газів нагрівається до стану перегрітої пари. Далі пара поступає в парову турбіну З, де теплова енергія пари перетворюється в кінетичну енергію. В конденсаторі 5 проходить повна конденсація водяної пари і вода насосом 6 подається назад в котел.

Цикл Карно, який є найефективнішим для водяної пари можливий тоді, коли ізотерми співпадають з ізобарами, тобто повинен проходити в області вологої насиченої пари. Технічно здійснити такий цикл важко через громіздкість насосної установки для стиснення вологої насиченої пари (рис.18.1.1).

Робота, яку необхідно виконати відповідає площі аdпт. Тому в паросилових установках за циклом Карно зберігається лиш загальне термодинамічне значення як циклу, який має в заданому інтервалі температури найбільше значення термічного к.к.д.

18.1 Цикл Ренкіна паросилової установки

Основним циклом паросилової установки є цикл Ренкіна. Принципова схема циклу показана на рис.18.1.2. Графічне зображення циклу показано на проходить при постійному тиску. В турбіні (процес 1-2) проходить адіабатне розширення пари до станув ологої насиченої пари. Конденсація пари і відведення теплоти проходить при постійному тиску і об'ємі. Процес 2-3 є одночасно ізобарнимі ізотермічним.

Оскільки вода практично нестислива, то в процес подачі води 3-4 є ізохорним, в TS - координатах точка 3 і 4 співпадають Робота, яка витрачається на стиснення в 34 8 7 є значно меншою чим в циклі Карно.

Термічний ККД циклу Ренкіна може бути визначений з загального виразу:

де l -робота в циклі;

q1 - кількість підведеної теплоти.

Теплота надається робочому тілу на ділянках 4-5-6-1 при постійному тиску. її можна визначити як

q1=h1-h2’,

де h1- ентальпія пари на вході в турбіну;

h2’- ентальпія живильної води.

Теплота, віддана парою в конденсаторі при постійному тиску на ділягках 2-3 буде рівна q2=h2 -h2’, де h2 - ентальпія пари, яка виходить із турбіни.

Зручно визначити ККД циклу паросилової установки за допомогою h і-s -діаграми, де h1 і h2 визначаються за відомими початковими і кінцевими параметрами адіабатного процесу розширення парив турбіні. h2’- визначається за таблицями насиченої пари для тиску p2

Важливою розрахунковою характеристикою циклу є питомий розхід пари d0 який представляє собою відношення часового розходу пари Dо в ідеальному двигуні довиробпеної елекгроенергіїіУ.

Із теплового балансу ідеального двигуна Dо ( h1- h2)=3600N

(18.2)

Із рівняння (18.1) неможливо вияснити характер впливу параметрів стану водяної пари на величину η циклу Ренкіна.

Для цього використаємо поняття еквівалентного циклу Карно, який проходить в межах середніх температур підведення і відведення тепла.

Із рівняння ηt=1-Т2ср/Т1cр випливає, що із збільшенням інтервалу середніх температур циклу (Т2ср і Т1ср) термічний ККД любого циклу збільшується. Збільшення середньої температури Т1ср в процесі підведення теплоти в циклі Ренкіна можна здійснити двома способами.

Перший - збльшення початкового тиску під ведення теплоти від 2,0 до 10,0 МПа при одній і тій же температурі перегрітої гари Т1=500°С і одним і тим же тиском в конденсаторі р2 = 0,004 МПа підвищує ККД циклу Ренкіна від 0,368 до 0,426 тобто на 16,2 %.

Необхідно відмітити, щовласне підвищення тиску ніякої переваги не дає і якщо б підвищення ηt; можна було б досягнути іншим шляхом то йому необхідно було б надати перевагу. Негативним наслідком підвищення початкового тиску є збльшення степені вологості гари в гроцесі розширення.

Другий - підвищення температури перегрітої гари Т’1>Т1 що також приводить до збільшення середньої температури підведення теплоти в процесі (рисі 8.1.4). В зв'язку з цим найбільш сприятливі результати одержані при використанні високих початкових параметрів пари. Мінімальна температура Т2 визначається температурою навколишнього середовища 20-30°С , що відповідає тиску р=0,0024-0,0043Мпа

Навідміну від теоретичного циклу в дійснік циклах процеси протікають необоротно. Робота тертя пари в турбіні перетворюється в теплоту, підвищує ентальпію пари в кінцевому стані від h2 до h2Д. Тому дійсний процес адіабатного розширення пари в турбін, протікає необоротно зі збільшенням ентропії, умовно позначиться не прямою 1-2, а кривою 1-2д (рис. 18.1.5)

Тоді відноснийвнутрішнійККД турбіни

(18.3)

η01 для сучасних машин складає 0,8-0,9. Абсолютний внутршній ККД для циклу Ренкіна:

(18.4)

ηі- сучасних паросилових установок η становить 0,35.

Дня підвищення ККД паросилової установки використовують попередній підігрів живильної води за рахунок відпрацьованої пари (регенеративний цикл), вторинний перегрів пари (цикл з вторинним перегрівом), комбіноване використання тепла (теплофікаційний цикл).

Особливістю регенеративного циклу (рис. 18.1.6) є те, що конденсат після конденсатора попередньо підігрівається в спеціальних теплообмінниках парою, яку відбирають із проміжних ступенів турбіни. Практично доцільне використання 6-8 степеней.

При відборі пари на підігрів конденсату з однієї сторони зменшується розхід теплоти q1 на одержання пари, але з іншої зменшується робота lо в турбіні. Не дивлячись на протилежний характер цих процесів відбір пари завжди підвищує ηt. Це пояснюється тим, що при підігріві живильної води за рахунок теплоти конденсації відпрасованої пари виключається підвід теплоти від зовнішнього джерела на ділянці 4-5' - (рис.18.1 6) і таким чином середня температура підводу теплоти від зовнішнього джерела в регенеративному циклі збільшується (підведення зовнішньої теплоти здійснюється тільки на ділянц 5 -6-1).

Задачі зручно вирішувати по h-s діаграмі. Розглянемо схему і регенеративний цикл з однимвід бором (рис.18.1.6).

Із одного кілограма пари, яка поступає в турбіну, акг пари розширяються тільки до тиску від бору р20 виконуючи корисну роботу і, l1= а(h1-h2),а 1-a кг розширюються в турбіні до кінцевого тиску р2, виконуючи корисну роботу

l2 = (1-а) (h1-h2)

Загальна робота 1 кг пари в регенеративному циклі:

l0 = l1 + l2 = а(h1-h20)+ (1-а) (h1-h2) або l0 = h1-h2- а (h20 -h2)

Кількість теплоти, затраченої на нагрів 1 кг пари, q1= h1-h20

Tермічний ККД регенеративного циклу:

Кількість відібраної парн визначається із балансового рівня теплоти нагрівана:

(1-а)(h'20- h'2)=а(h20- h'2), (18 6)

звідки:

(18.7)

де h20- ентальпіяшрипритиску відбору;

h'20- ентальпія парн при тиску виходу парн із турбіни;

h'2- ентальпія парн при тиску в конденсаторі.

18.2 Цикл з вторинним перегрівом пари

Як було встановлено негативним наслідком підвищення початкового тискуєзошьшення степені вологості гвривкінці розішрення.

Щоб уткнути підвищення вологості в кінці адіабатного розширення за допустиму межу, використовують підвищення початкової температури перегрітої пари, а також вторинний або проміжний перегрів (рисі 8.2.1 та 182.2). Суть проміжного перегріву полягає в тому, що пару після розширення 1-2 в першій ступені турбіни І при постійному тиску рпр вторинно перегрівають в другому перегрівачу ПП2 до температури Т’1.

Потім пар а поступає в наступну ступень турбіни, депроходить розширення 1’-2 до тиску в конденсаторі. В результаті вторинного Перегріву степінь сухості пари збільшується з x1; до х2 відповідно точки 20 i 2.

Одночасно може підвищуватись і термічний коефіцієнт циклу.

Рис 18.2.1. Принципова схема паросилової установки з вторинним перегрівом пари.

18.3 Теплофікаційний цикл

В описаних цикл ах значна частина теплоти (більше 50%), що надається парі в паровому котлі, відводиться в конденсаторі. Вода, яка має температуру 25-30°С не може бути використана в огвлювапьних системах або для технологічних нужд.

Щоб в подальшому використовувати теплоту необхідно підвищити її температуру, для цього необхідно підвищити тиск парц яка виходить із турбіни. Такі установки працюють з погіршеним вакуумом або з протитиском. Поряд з виробництвом електроенергії вони відпускають теплоту в вигляді пари або гарячої води і називаються теплофікаційннмн(ТЕЦ). Схема і цикл показані на рисунку 18.3.1 та 18 3.2.

В цій установці відсутній конденсатор і пар а після турбіни з підвищеним тиском і температурою Тп направляється до споживача теплоти ТС, віддаючи теплоту споживачу, пара конд енсуєть ся і насосом направляється в котел.

Підвищення протитиску приводить до зменшення електричної енергії і термічного ККД, але загальне використання теплоти qвих при цьому значно підвищується.

qвих=l0 + q2 (13 8)

Комбінований спосіб виробництвом електроенергії і теплової енергії є одним з головних методів підвищення економічності теплових ел ектростанцій і служить основою тепгтофікації.

Характеристикою комбінованого процесу буде служити відношення використаної енергії іо l0 + q2 до підведеної теплоти в процесі q1

(18.9)

В ідеальних випадках, коли вся теплота q2 використовується = 100%. В дійсності досягає 60-80%.

Щоб в великому діагвзоні міняти теплове і електричне навантаження на більшості ТЕЦ використовують конденсаційні турбіни з проміжним відбором пащ, при тиску, необхідному для споживачів теплоти

18.4 Парогазовий цикл

Значне підвищення ефективності ПСУ можна досягнути шляхом комбінування газотурбінної установки з паросиловою (рнс.18.4.1, 18.4.2).

Продукти згорання після парового котла з температурою біля 700°С поступають в газову турбіну Т1. Попередній нагрів конденсату, який поступає в котел, проводиться випускними газами газової турбіни (процес d-а) в газоводяному підігрівану ГВ. Пара з котла поступає в парову турбіну Т2.

Відповідно в таких умовах ефективно використовується гази, що виходять із котла, а також покращується використання газів, які залишають газову турбіну. Переваги газотурбінного циклу - використання більш високої темстератури робочого тіла. В газових турбінах до 700°С, в паросилових установках - 500-550 ЯС. Перевага перед газовими є те, що в паровому котлі використовується більш низька температура холодного джерела. В газотурбінному температура на виході складає 150°С, а в паросиловому 25-30°С. Комбінована установка дає економію палива на 15% в порівнянні з паротурбінною.

19. Цикли холодильних установок

Холодильні установки використовують в харчовій промисловості і побуті, при заморожуванні ґрунту в будівництві тунелів і каналів, в хімічній і газовій промисловості приспалюванні газу, кондиціюванні повітря

Холодильні установки працюють по поротних циклах.

19.1 Цикл повітряної холодильної установки

Повітря з холодильника 1 (рис. 19.1.1), яке охолоджує приміщення 5 всмоктується в циліндр компресора 2 (процес й-1), де стискується (процес 1-2) (рис 19.1.2). При стискуванні температура повітря підвищується від Т1, до Т2 (процесі -2). Стиснуте повітря виштовхується з циліндра компресора (процес 2-b) в теплоприймач 3, де ізобарно охолоджується до температури Т3, віддаючи теплоту охолоджуючій воді q=Cрm1(Т2- Т3)

Охолоджене повітря прн тиску Р3 поступає в щліндр розширювальної машннн 4 (процес в-3). Тут проходить процес його адіабатнчного розширення від Р3 до Р4 = Р1 з виконанням роботи.

При адіабатичному розширенні повітря температура його знижується до 203...21K.

Охолоджене повітря з цнлівдра розширювальної машннн виштовхується в холодильник 1 (процес 4-1), де ізобарно нагрівається (4-1), забираючи від середовища приміщення кількість теплоти з, q1= Cрm2 (Т1- Т4). Площа а12bа показує роботу компресора lk площа b34аb - роботу розширювальної машннн lр, а площа 12341 рівна різниці площ - роботу, яка витрачається в установці, тобто роботу циклу lk = lk - lр.

З іншої сторони, робота циклу lk=q1-q2- Холодильний коефіцієнт установки визначаємо наступним чином:

(19.1)

Приймаємо Cрm1= Cрm2 і поділимо чисельник і знаменник дробу на (Т1- Т4).. Одержимо:

(19.2)

З адіабат 1-2 і 3-4 слідує,що

а

Оскільки

р2 =р3 і р4=р1,

то

Т2/Т1 = Т3/Т4 ; Т4/Т1= Т3/Т2

Тоді:

Підставляємо в рівняння (19.2). Одержима

(19.3)

Порівняємо між собою холодильні коефіцієнти циклу повітряної установки і зворотного циклу Карно, взятих в одному і тому ж інтервалі граничних температур холодильника і теплоприймача

При ізотермічних процесах підводу і віддачі теплоти в зворотному щклі Карно гранична температура холодильника повинна бути рівна Т1, анагрівача -Т3. Тоді холодильнийкоефіцієнгзворотногоциклу Карно:

Т3< Т2 то чпл<чк

Холодильний коефіцієнт називають також питомою холодопродуктивністю qо, яка показує кількість відібраної від холодильного джерела теплоти на одиницю затраченої роботи.

Цикл повітряної холодильної установки малоефективний. Крім того повітря має малу теплоємність, в результаті чого потрібний його великий об'єм.

19.2. Цикл парової холодильної установки

Відношення маси аміаку до маси розчинника називається масовим відношенням аміаку.

Коли t -34 обидва компоненти знаходяться в рідкому стані. Якщо розчин підігрівати, аміак випарується і в кінці масове відношення рівне 0. Пара буде чистий аміак, а рідина - вода. охолоджуюча

Рис. 19.4.1. Схема абсорбційної холодильної установки.

На рнс.19.4.1. показана схема найбільш простої абсорбційної установки. В кип’ятильнику 1, який містить водно-аміачний розчин при тиску рк і міцності ζк, проходить випарювання з розчину аміаку за рахунок теплоти, яка поступає з гарячим теплоносієм. На випарювання витрача ється теплота в кількості q1,.

Одержані таким чином пари аміаку направляються в конденсатор 2, де, віддаючи теплоту охолоджуючій воді (навколишньому середовищу), конденсується при рк = const. В результуючому вентилі 3 тиск рідкого аміаку знижується до тиску в абсорбері 6 ра< рк, в якому міцність розчину підтримується ζк > ζa. При такому тиску аміак поступає у випарник 4 і перетворюється в пару за рахунок теплоти q2, яка відводиться від охолоджуючих тіл в холодильній камері 5. Потімпаранаправляєгьсяв паровий простір абсорбера 6, в якому знаходиться випарений із розчину аміак, що має в зв'язку з цим Яльш високу температуру, ніж пара, яка поступила із випарювача. Ця хол одна парапоглннається розчином. Виділена при поглинанні теплота виводиться із абсорбера охолоджуючою водою.

Для того, щоб масове відношення розчинів в котлі і абсорбері запишалось весь час постійним, проводять перекачування насосом 7 розчину з більшим масовим відношенням з абсорбера в котел, а розчин з меншим масовим відношенням поступає з котла в абсорбер. В результаті того, що тиск в котлі вищий, чим в абсорбері, розчин по шляху в абсорбер проходить через дросельний клапан 8.

20. Тепловий насос

Тепловий насос - це машина призначена для поглинання теплоти з навколишнього середовища і передачі її об'єкту з ошьш високою темпер атурою.

На рис. 20.1. показана схема теплового насосу. Основними елементами є: компресор 1, конденсатор 2, регулюючий вентиль 3 і випарник 4, які складають звичайну компресійну холодильну установку. Вигарювання холодильного агенту в випарнику проходить за рахунок холодної води з жого-небудь водоймища. Подача водив випарник проходить за допомогою насосу 5. Охолоджена в випарнику вода скидається далі в водоймище. Конденсація виштовхнутого із компресора агента здійснюється в конденсаторі водою із зворотньої лінії системи опалення Підігріта в конденсаторі вода направляється в прилади опалювання 9, розміщені в опалюваному приміщенні 7. Циркуляція водив системі огвленняздійснюєтьсянасосом 6.

Рис 20 1 Тепловий насос

Ефективність теплового насосу оцінюється опалювальним коефіцієнтом

де q1 - питома теплота, яка виділяється при конденсації холодильного агенту в конденсаторі;

l0 - питома робота, яка затрачається на привід компресора.

ОСНОВИ ТЕПЛООБМІНУ

Основні види теплообміну.

Теорія теплообміну вивчає закони поширення і передачі теплоти між тілами

Розрізняють три види тепло обміну: теплопровідність, конвекція і променистий тепп ообмін.

21. Теплопровідність

Якщо у твердому тіш, нерухомій рідині або газі температура в різних точках не однакова, то теплота буде переходити від ділянки тіла з більшою

температурою до ділянки тіла з меншою температурою. Такий процес передачі теплоти називається теплопровідністю. Теплота при цьому передається за рахунок руху і взаємодії ел ементарних частинок - електронів.

Необхідною умовою процесу теплопровідності є різниця температури в різних точках тіла. В загальному випадку температура є функціао координат і часу:

t=f(x,y,z,τ) (21.1)

Сукупність значень температури для всіх точок простору в даний момент часу називається температурним полем.

Якщо температура тіла не змінюєтьсяв часі, то таке температурне поле називається стаїі онарннм, якщо змінюється - не стаціонарним.

Температура може бути функцією однієї, двох або трьох координат. Відповідно цьому температурне поле може бути одновимірним, двовимірним і тривимірним.

Рис. 21.1. До визначення температурного градієнту і теплового потоку.

При довільному температурному полі в тілі можна знайти точки з однаковою температурою. Геометричне місце таких точок утворює ізотермічну поверхню (рис. 21.1). Очевидно, що передача теплоти може відбуватися тільки від поверхні з більшою температурою до іншої з меншою температурою. Кількість переданої теплоти буде залежати від різниці температур між цими ізотермічнимиповерхнямиі від віддалі міжними.

Границя відношення зміни температур ∆t між двома ізотермічними поверхнями до віддані між ними ∆n взятій по нормалі називається темпер атурним градієнтом.

(21.2)

Температурний градієнт є вектором, направленим по нормані до ізотермічної поверхні в сторону збільшеннятемператури.

Теплота поширюється в сторону гротиггежну градієнту температури, тобто в сторону меншої температури. Кількість теплоти, яка ператосить ся через будь-яку ізотермічну поверхню за одиницю часу називається тепловим потоком Q[Вт]

Тепловий потік віднесений до одиниці площі називається густиною теплового потоку . Густина теплового потоку величина векторна і направлена в сторону поширення тепла.

21.1 Закон Фур’є

Фур'є експериментатгьно встановив, що кількість переданої теплоти пропорційна падінню температури, часу і площ січення, перпендикулярно направленого напряму поширення теплоти,

Q=λFτgrad t (21.3)

Для густити теплового потоку закон Фур'є буде мати вигляд:

(21.4)

Де n-називається коефіцієнтом теплопровідності ,.

Знак "-" показує, що напрям поширення теплового потоку і напрям градієнту температури- протилежні.

Коефіцієнт теплопровідності є фізичною властивістю речовини і характеризує її здатність проводити тепло:

Значення коефіцієнта теплопровідності представляє собою кількість теплоти, яка проходить через одиницю площі ізотермічної поверхи за одиницю часу при температурному градієнті рівному одиниці.

Дтярізних матеріалів коефіцієнт теплопровідності різний і в загалшому випадку залежить від структури, густини, температури, вологості і тиску. В зв'язку з тим, що в процесах теплообміну температура тіла змиюється і неоднакова в різних частинах тіла, тов першу чергу необхіднознатн залежність коефіцієнту теплопровідності від температури. Для металів ця залежність майже лінійна

(21.6)

n0- коефіцієнт теплопровідності прн температурі t0

b-постійна, жавизначаєтьсядослідним шляхом.

Коефіцієнт теплопровідності газів лежить в межах 0,005-0,5 Вт/мК З підвищенням температури коефіцієнттеплопровідності росте.

Коефіцієнт теплопровідності крагшевих рідин лежить в межах 0,08-0,7Вт/мК. З гідвищенням температури зменшується, за виключенням води і гліцерину.

Коефіцієнт теплогровідності металів лежить в межах 20 -400 Вт/мК. Найбльш тепгтопровідним металом є срібло (n=410) потім чиста мідь (n=395), золото (n=300), алюміній (n=210).

Дня більшості металів при збільшані температури коефіцієнт теплопровідності падає. Коефіцієнт тепгтопровідності падає при наявності в металі різних домішок. Так коефіцєнт теплопровідності дгтя чистої міді n = 395Вт/м К а для міді зі слідами миш 'яку n=1425т/м К

21.2 Диференціальне рівняння теплопровідності

Розглянемо передачу теплоти за рахунок теплогровідності через елементарний кубик з гранями dх, dу, dz приймаючи, що коефіцієнт теплопровідності n, питома теплопровідність Ср і густина с постійні (рис 21.2)

Визначимо потік теплотичерез грані елемента в результаті теплопровідності. З гідно закону Фур'є кількість теплоти, яка проходить через грань АВСДВ направленні осі Х рівна

(21.7)

а через грань ЕFGК, яка має температуру

за цей же час

(21.8)

Віднімаючивід рівняння(21.7) рівняння(21.8) одержима

(21.9)

Аналогічнов напрямі осей У i Z

(21.10)

(21.11)

Кількість теплоти, яка залишилася в цьому об'ємі:

(21.12)

В зультаті цього температура тіла зміниться

(21.13)

а значить

Після скорочення одержима

де

а=

коефіцієнт температуропровідності.

- операторЛапласа.

Одержане рівняння називається диференційним рівнянням теплопровідності Фур'є-Kірхгофа.

Дня того, щоб розв'язати рівняння теплопровідності в кожному конкретному випадку необхідно поставити умови однозначності. Умови однозначності включають:

геометричні умови, які характеризують розміри і положення системи;

фізичні умови, які визначають теплофізичні параметри тіла (коефіцієнт теплопровідності, густин а, теплоємність);

початкові умови, які описують розпрнділення температури в тілі в

початковий момент часу;

граничні умови, які описують стан тіл а на гр аничних поверхнях.

Граничні умови бувають трьох родів.

Граничні умови першого роду задають температуру на граничних поверхнях: t=f(x,y,z)

Граничні умови другого роду задають тепловий потік на граничних поверхнях: q=f(x,y,z)

Граничні умовитретього роду задають коефіцієнт тепловіддачі а і температуру навколишнього середовища tn

21.3 Тетопровідність плоскої стінки

Розглянемо одношарову необмежену плоску стінку, товщиною Б , з коефіцієнтом теплопровідності А. (рис. 21.3.1).

Визначимо постійні інтегрування, використовуючи граничні умови (21.15).

х=0х = 6

c2=t1t2=c1δ+t1

Отже розподілення температури в стінці

буде мати лінійний характер.

Визначити тепловий потік через плоску одношарову стінку можна, використовуючи закон Фур'є (21.4).

Проінтегрувавширівняння від t1 до t2, одержимо:

- називають теплопровідністю плоскої стінки.

- термічний опіртеплопровідносп одношарової стіки.

21.4 Теплопровідність багатошарової стінки

Розшянемо теплопровідність багатошарової плоскої стінки з товщиною шарів δ1, δ2, δ3 і коефіцієнтами теплопровідності λ1, λ2, λ3, (рис 21.4.1).

Після додавання лівих і правих частн рівнянь, одержима

(21.17)

для п шарів

(21.18)

21.5 Теплопровідність через циліндричну стінку

Розглянемо стаціонарний процес теплопровідності (рнс 21.5.1).

Проінтегру єм о рівняння:

(21.21)

Підставимо граничні умови (21.20) в рівняння (21.21).

(21.22)

(21.23)

віднімемо від (21.22) рівняння (21.23):

(21.24)

Теплопровідність через цилівдрнчну стінку

(21.25)

- термічний опір теплопровідності через циліндричну стінку.

Дня багатошарової циліндричної стінки тепловий потік рівний :

(21.26)

21.6 Теплопровідність тіл з внутрішнім джерелом теплоти

Розглянемо стінку товщиною - 2δі коефіцієнтом теплопровідності – λ (рис 21.6.1). В стінці діє внутрішнє джерело з об'ємною густиною теплового qv

(21.27)

Інтегруємо рівняння (21.27):

Підставимо граничні умови: х = 0 , t0 = С.

Одержимо:

-рівняння зміни температури в плоскій стінці з внутрішнім джерелом теплоти.

22. Конвективний теплообмін

Конвекцією називається процес поширення теплоти за допомогою руху макроч астин ок рі ди нн.

В інженерній практиці найчастіше розглядають теплообмін між рухомою рідиною і твердою поверхнею, який називається конвективнич теплообміном, або тепловідд ачею

Згідно закону Ньютона-Ріхмана тепловий потік Q від рідини до стінки пропорційний площі поверхні теплообміну і різниці температур між твердою етикою tc і рідиною tp.

(22.1)

Де а-коефіцієнттепловіддачі Вт/м2К

Фізичний зміст коефіцієнта тепловіддачі можна визначити як кількість теплоти, яка проходить через одиницю площі ізотермічної поверхні за одиницю часу при різниці температур між стінкою і поверхнею рівною 1 С.

Процес конвективного теплообміну нерозривно зв'язаний з руком рідини Розрізняють два видируху-вимушений і вільний.

Вільний рух рідини виникає в результаті дії масових сил; вимушенім -

при дії стороннх збудників (насоси, вентилятори). На процес конвективного теплообміну впливає і режим руху - ламінарний чи турбулентний При ламінарному русі течія має спокійний характер, при турбулентному -утворюються завихрення Але при люб ому режимі руху рідини в тонкому шарі біля поверхні стінки рух рідини в результаті дії сил тертя сповільнюється і швидкість падає до нуля. Тонкий шар рідини біля поверхні тіла, в якому відбувається зміна швидкості рідини від значення швидкості не збудженого потоку подалі від стінки до нуля безпосередньо на стінці називається динамічнимпограничним шаром.

Тонкий шар рідини, безпосередньо біля стінки, рух в якому має ламінарний характер,називають в'язкимпідшаром .Якщо температури стінкиі рідини неодинакові, то біля стінки утворюється тепловий пограничний шар, в якому відбувається вся зміна температури рідини. За пограничним шаром температура рідини постійна і рівна й. В загальному випадку товщини теплового і динамічного шару можуть не співпадати. Співвідношення товщини динамічного і теплового пограничних шарів визначається безрозмірним числом Прандля:

(22.2)

Де v-кінематичнав'язкість рідини;

а-коефіцієнт температуропровідності.

Безпосередньо біля стінки в ламінарному підшарі перенесення теплоти до стіїки здійснюється теплопровід ні стю і може бутивиражене законом Фур'є:

Де п – нормаль до поверхні тіла

Цю ж кількість теплоти можна визначити законом Ньютона-Ріхмана

Прирівнюючи ці рівняння одержимо:

; (22.3)

Диференціальне рівняння, що описуєумови теплообміну на поверхні каналу (п = 0) називається рівнянням тепгтопер едачі.

По своїй фізичній суті конвективний теплообмін є дуже складним процесом і залежить від великого числа факторів, які визначають процес тепловіддачі. В загальному випадку коефіцієнт тепловіддачі є функцією фізичних параметрів рідини, характеру руху, форми і розмірів тіла.

Звідси коефіцієнт тепловіддачі:

а =f(λ,l,ρ,v,υ,β,Ф,a). (22.4)

Рівняння (22.4) (показує, що коефіцієнт тепловіддачі -складна величина і для її визнач еннянеможливодатизагальну формулу. Як правило для визначення а необхідно використовувати експериментальні дослідження.

22.1 Основні поняття теорії подібності

При вивченні різних фізичних явищ використовують два методи досліджень, які дозволяють одержати кількісні закономірності. В першому методі використовується експериментальне дослідження конкретних властивостей одиничного явищ а, в друго му - виходять з теоретичного дослідження даної проблеми. Перевагою експериментального методу дослідження є достовірність одержаних результатів. Але результати даного експерименту не можуть бути використані стосовно другого явица, яке в деталях відрі зняєть ся від вивчено го.

Другий метод досліджень для знаходження кількісних характеристик використовує найбільш загальні закони природи, які в свою чергу є результатом надзвичайно широкого уза гальнення дослідних даних.

Будь-яке диференціальне рівняння є математичною моделлю цілого класу явищ.

Таким чином, гід класом розуміють таку сукупність явищ, які характеризуються основним механізмом процесіє і однаковою фізичною природою

Явища, які входять в клас, підпорядковуються однаковим рівнянням як по формі, так і по фізичному змісту величин, які в нього входять Наприклад, диференціальне рівняння теплопровідності.

До кожного диференціального рівняння необхідно поставити умови однозначності.

В багатьох випадках знайти рішення диференціального рівняння, яке б відповідало конкретним умовам однозначності неможливо.

Об'єднання двох методівздійснюється теорією подібності.

Крім класу явищ і одиничного явища теорія подібності вводить поняття групи явищ

Групою явищ називають сукупність фізичних процесів, які описуються однаковими по формі і змісту диференціальними рівняннями і однаковими по формі і змісту розмірними умовами однозначності.

Поняття про подібні сть явищ зустрічається ще в шкільному курсі, коли ми говоримо про подібність трикутників. В даному випадку мова йде про геометричну подібність. Можна також говорити про подібні сть картини руху двох потоків рідини - кінематичну подібність, подібність поля розподілу сил -динамічну подібні сть, подібність розподілу температур-теплову подібність.

В загальному вигляді поняття подібності явищ зводиться до наступних положень:

Понягтяпро подібність у відношенні до фізичних явищ можна тільки застосовувати до явищ фізично однорідних, які описуються однаковими по формі і по змісту аналітичними рівняїнями.

Обов'язковою умовою подібності явищ є геометрична подібність.

При аналізі подібних явищ сггівставляги між собою можна тільки однорідні величини у відповідних точках простору і у відповідний момент часу.

Однорідними називаються величини, які мають однаковий фізичний зміст і однакову розмірність.

Відповідними точками геометрично подібних систем називаються такі точки, координати яких задовольняють умові:

; ;

Два проміжки часу називають ся відповідними, якщо вони мають спільний моментвідгтіку і зв'язані між собою співвідношенням:

- Подібність двох фізичних явищ означає подібність всіх величин, які

характеризують дане явище.

Це означає, що у відповідних точках простору і у відповідний момент часу для любих однорідних фізичних величин справедлива рівність: Х1 = СХ2.

Коефіцієнт пропорційності С називається константою подібності, або постійною подібності.

Постійні подібності не можна встановлювати або вибирати випадкова Між ними існує зв'язок, який виводиться із математичного опису процесу. Сгівв ід ношення між постійними подібності встановлює існування особливих величин, які називаються числами подібності.

Числа подібності встановлюються з розв'язку диференціаттьних рівнянь або шляхом узагальнення експериментальних даних. Наприклад, розглянемо рівняннятеплопередачі (22.3):

(22.5)

(22.6)

Позначимоконстантиподібності:

; ; ;

Звідси:

;

і.т.д., підставляючи ці співвідношення в рівняння (22.6) і скоротивши на С, одержимо:

(22.7)

Рівняння (22.5) і (22.7) тотожні, оскільки виражають зв'язок між параметрами процесу, обумовленим диференціальні мрівнчнням тепловіддачі:

;

де - число Нуссельта - характеризує теплообмін в пограничному шарі.

Безрозмірні числа подібності представляють собою нові змінні. Кількісний зв'язок між числами подібності визначається дослідним шляхом Вказівку на те, в якому напрямку вести експеримент дає теорія подібності.

В основу теорії подібності покладені три теореми

Перша теорема: Подібні між собою явища мають одинакові критерії подіон ості.

Теорема вказує на те, що при виконанні дослідів необхідно і достатньо вимірювати лише ті величини, які входять в числа подібності явища, яке ми вивчаємо.

Друга теорема подібності: Залежність між змінними величинами, які характеризують процес, може бути подана у вигляді залежності між числами подіон ості.

З другої теореми подібності випливає, що результати любого експерименту можна описати у вигляді критеріїв подібності і залежність між нимиподати увигляці рівнянь подібності.

Третя теорема подібності вказує необхідні умови для того, щоб явища виявилися подібними один одному.

Третя теорема може бути сформульована наступним чином - подібні ті процеси, умови однозначності яких подіоні, і числа подібності, складені зумов однозначності, чисельно одинакові.

Тобто вшначальнезначення мають числа подібності складені з величин, які входять в умови однозначності. Такі числа подібності називаються критеріямиподібності.

Таким чином, теорія подібності дозволяє не інтегруючи диференціальне рівняння одержати з них числа подібно сті і встановити рівняння подібності, які справедливі для всіх подібних процесів.

Конвективний теплообмін характеризується такими числами подібності:

числоПрандгля

характеризує теплофізичніпараметрнречовини

число Грасгофа

де β -коефіцієнт об'ємного розширення; g-прискорення вільного падіння;

l - характерний лінійний р оз мір;

v-кінематична в'язкість;

∆t -різниця температур між стінкою і рухомим середовищем.

Число Грасгофа характеризує кінематичну подібність явищ при вільній конвекції

Число Реинольдса:

,

де ω-швидкість руху.

Число Реинольдса характеризує гідродинамічну подібність явищ.

В теорії теплообміну часто використовують також числа подібності:

число Фур'є

де τ- час процесу,характеризує нестаціонарні явища теплопровідносп;

число Біо

де λ -коефіцієнт теплопровідності твердого тіла.

Число Біо характеризує поширення теплоти в тілі при нестаціонарній теплопровідності;

число Пекле

характеризує співвідношення між швидкістю руху

джерела теплоти і швидкістю поширення теплоти

Залежність між критеріями подібності представляється у вигляді критеріальних рівнянь.

Загальний вигляд критеріального рівняння вимушеної конвекції можна записати так:

Nu=f(Re,Pr)

Визначальним є критерій Рейнольдса. По його величині можна вибирати показник степеня і коефіцієнгив рівнянні.

Длявільної конвекції критеріальне рівняння має вигляд:

Nu=f(Gr,Pr)

Де визначальним є критерій Грасгофа.

Для вільно-вимушеної конвекції:

Nu=f(Re,Gr,Pr)

Для вибору теплофізичним параметрів при розрахунку критеріїв подібності при вільній конвекції визначальною є середня температура між стінкою і рухомим середовищем, при вимушеній- середня температура рідини.

23. Променистий (радіаційний) теплообмін

Променистий теплообмін - це процес поширення теплоти за допомогою електро матнітнж хвиль.

Випромінювання характеризується довжиною хвилі X і частотою V. Теплове випромінювання має однакову природу з іншими видами випромінювання і відповідає діапазону довжин хвиль від 0,8-10-6 <λ<0,8-10-3 м. Роль теплового випромінювання особливо велика в процесах з високою температурою. Мж процесами теплопровідності, конвекції і променистим теплообміном існує суттєва різниця В процесах променистого теплообміну суцльність середовища необов'язкова. За рахунок променистого теплообміну тепло поширюється і в вакуумі.

Величина теплового випромінювання, яка відповідає дуже вузькому

інтервалу зміни довжини хвилі від λ до λ + dλ, який можна характеризувати даним значенням довжини хвилі λ, називається потоком монохроматичного випромінювання Qλ.

Потік випромінювання, який відповідає всьому спектру в межах від нуля до ∞, називається інтегральним або повним променистим потоком Q.

Потік, який випромінюється з одиниці поверхні по всіх напрямках наггівсф еричн ого простору називається густиною теплового потоку.

Випромінювання, яке визначається гриродою даного тіла називається власним. Енергія електромагнітних хвиль (Епад) які попадають на навколишні тіла, частково поглинаються ними (Епог). При і*ому частина енергії випромінювання переходигьу внутрішню енергію поглинального тіла, частина відбивається (Евід) і частина проходить крізь нього (Епр).

Згідно закону збереження енергії:

Епад= Епог+ Евід+ Епр (23.1)

Позначимо Епог/ Епад=А; Евід/ Епад=R; Епр/ Епад=Д

де А - коефіцієнт іюглннання;

R - коеф іцієнт відбивання;

Д - коефіцієнт пропускання

А+R+Д=1

Якщо тіло поглинає всі падаючі на нього промені. тобто.А=1. Д=0. R=0. то воно називається абсолютно чорним. Коли вся падаюча енергія відбивається. R=1, .A=0. Д=0. то тіло називається дзеркальним. .Якщо Д=1, .A=0. R=0, то таке тіло називається прозорим. Тіло, яке приймає участь в теплообміні крім власного випромінювання буде відбивати падаючу на нього енергію:

Евід= RЕпад (23.2)

Сума енергії власного і відбитого випромінювання становить ефективне випромінювання

Для площини а-а

qp=E-Eпог=Е-АЕпад (23.4)

Для площини b-b

qp=Eеф-Епад (23.5)

Із рівняння (23.4)

Eеф= qp +Епад (23.6)

В свою чергу (23.4)

Підставляючи вираз для Епад в рівняння (23.6) одержимо:

(23.7)

23.1 Закони променистого теплообміну

Залежність мі ж спектральною інтенсивністю випромінювання абсолютно чорного тіла і довжиною хвилі встановиюсзакон Планка:

де с1=3,74∙10-16Вт∙м2

с2=1,44∙10-2м/град

При декому значенні λm залежність має максимум. Для всіх довжин хвиль інтенсивність випромінювання тим вища, чим вища температура. Максимум кривих з підвищенням температури зміщується в сторону більш коротких довжин хвиль.

Згідно закону зміщення Віна:

λmaxT=2,898∙10-3 мК (23.9)

Якщо проінтегрувати залежність (23.8) по всьому інтервалі хвиль одержимо закон Стефана-Больцмана. Гостина інтегрального випромінювання для абсолютно чорного тіла пропорцйна температурі в четвертій степені:

Е=σ0∙Т4, (23.10)

де σ0= 5,6710-3 Вт/мК- постійна Стефана-Больцмана.

Для сірих тіл:

Е=εσТ4 (23.11)

де ε - ступінь чорноти - відношення випромінювальної здатності сірого тіла до випромінювальної здатності абсолютно чорного тіла при цій же темпер атурі.

Згідно закону Кірхгофа відношення густини потоку випромінювання сірого тіла до його поглинальної властивості не залежить від природи тіла і рівне густині потоку випромінювання абсолютно чорного тіла при цій же темпер атурі.

Розглянемо систему двох тіл, які мають необмежені плоскі поверхні, повернуті одна до іншої (рис. 23.1.2). Поверхня 1 належить сірому тілу, а поверхня 2 - абсолютно чорному.

Де Eφ0 - густина потоку випромінювання, яка відповідає куту φ

dΩ - елементарний тілесннйкуг.

23.2 Теплообмін між дбома тілами

Як правило, тілов процесі променистого теплообміну взаємодіє з іншими тілами Розглянемо процес теплообміну між двома плоско паралельними поверхнями, (рис 232.1). Дія кожної повфхні задані постійні в часі температури Т1 і Т2 (Т1>Т2), поглинальні властивості тіл А1 і А2.

Падаючий на пластину променистий потік рівний ефекгивн ому випромінюванню першої пластини і навпаки.

Тоді результуючий тепловий потік:

Q1-2=Eеф1- Eеф2 (23.14)

В свою чергу за формулою (23.7):

Враховуючи що Q12=-Q21 і підставляючи в значення q12 одержим:

Звідси:

Згідно закону Кірхгофаі Стефана-Больцмана:

звідси

(23.15)

(23.16)

Розглянемо променистий теплообмін між двома тілами, одне з яких знаходиться є порожнині іншого (рис 23.2.2). Поверхня внутрішнього тіла F1 випукла, зовнішнього F2 - ввігнута - відповідне значення температур поверхонь Т1 і Т2 (Т1>Т2) пошинальні властивості тіл А1 і А2. Резупьтуючий тепловий потік, який передається від першого тіла до другого, визначається рівнянням:

(23.17)

де φ21- середній кутовий коефіцієнт випромінювання, який характеризує частину випромінювання зовнішньої поверхні, яка по падає на внутрішню.

Частина енергії, яка залишилася, проходить повз внутрішнє тіло і знову попадає на зовнішню поверхню.

Рис 23.2.2. Схема променистого теплообміну між тілами в замкнутому просторі

Повні потоки ефективного випромінювання визначається співвідношенням:

(23.18)

Враховуючи, що Q12 = -Q21 також співвідношення (23.17) і (23.18) одержима

Замінити співвідношення виразом

одержимо:

Дня визначення величини φ21 приймаємо Т1= Т2 і отже Q12 = 0.

В цьому випадку F1- φ21F2=0 , звідси

Кінцевий вираз для результуючого потоку:

(23.19)

де:

приведена поглинальна здатність системи

При випромінюванні тіла в необмежений простір з температурою Т2 приймемо F1<

(23.20)

При наявності екранів поглинапьна здатність:

Де А1, А2 -тюглинапьна здатність тіл;

Аеі – поглинальна здатність і-го екрану;

п-кількість екранів.

24. Теплопередача

Теплопередачу можна розглядати як теплопровідність при граничних умовах треть ого роду. Теплопередача включає в себе: тепловіддачу від більш гарячої рідини до стінки, теплоповідність в стінці, тепловіддачу від стінки до більш холодного середовища.

Теплопередача - це передача тепла від одного рухомого середовища до іншого через розділюючу стінку до іншого.

24.1 Тепюпередача через плоску спинку

При стаціонарному тепловому режимі тепловий потік через стінк

(24.2)

Той же тепловий потік передається від стінки до холодного середовища

Рівняння можна зали сатиувнгляді:

(24.3)

Якщо просумувати всі рівняння отримаємо:

Тепловий потік становить:

(24.4)

Величину

називають коефіцєнтом теплопередачі,

Рівняння можна загасати у вигляді:

q=k(tp1-tp2), (24.5)

Величина, обернена до коефіцієнта теплопередачі, називається повним термчнимопоромтеплопередачі:

Оскільки загальний термічний опір складається з часткових термічних опорів, то у випадку багатошарової стінки необхідно враховувати опір всіх складових:

(24.6)

Густина теплового потоку через багатош рову стінку:

(24.7)

Температури поверхонь:

;

На межі двох шарів температуру можна визначити за формулою:

(24.8)

24.2 Теплопередта через циліндричну стішу

Розглянемо однорідну циліндричну стінку довжиною l зі сталим коефіцієнтом теплопровідності λ (рис. 24.2.1). Температури рухомих середовищ відповідно tр1 і tр2 постійні коефіцієнти тепло віддачі на внутрішній і зовнішній поверхнях труби а1, і а2.

Рис. 24.2.1. До визначення теплового потоку через циліндричну стінку.

Допустимо, що довжина труби велика порівняно з товщиною стінки. То му в трата ми з тор ця тру ои можна знехтувати.

Кількість тепла, яке поступає від рухомого середовища до стінки і від стінки до другого середовища буде одна і таж

Від середовищадостінки:

q1=a1πd1(tр1- tc2)

Тепловийпотік через стінку:

Від стінки до другого серед овища:

q2=a2πd2(tр1- tc2)

Запишемо рівняння наступним чином:

Просумуємо рівняння і одержимо:

Звідси:

Позначимо:

(24.9)

Рівняння запишеться:

q1=k1pπ(t1-t2), Вт/мК

Значення k1 чисельно рівне кількості теплоти, яка проходить через стінку довжиною 1м за одиницю часу від одного середовища до іншого при різниці температур між ними в один градус.

Величина

обернена до лінійного коефіцієнта теплопередачі називається лінійним термічним опором теплопередачі.

Окремі доданки повного термічного опору представляють собою:

, - термічні опори тепловіддачі на відповідних поверхнях;

- термічний опір теплопровідності стінки.

Якщо тепловий потік через циліндричну стінку віднести до внутрішньої або зовнішньої гюверхні стінки, то отримаємо густину теплового потоку Вт/м , віднесену до одиниці відповідної поверхні труби:

Тобто:

kl=d1.k1= d2.k2

Формули для k1і k2 мають вигляд:

У випадку теплопередачі через багатошарову стінку система рівнянь (24.9) повинна бути замінена системою, яса враховує опір теплопровідності всіх шарів:

(24.10)

З рівняння отримаємо, що:

Критичиеий діаметр теплопередачі через циліндричну стінку. Розглянемо вплив зміни зовнішнього діаметра на термічний опір однорідної циліндричної стінки:

При постійних значеннях а, d, λ та a2 - повний термічний опір циліндричної стінки буде залежати від зовнішнього діаметра.

При збільшенні d2 вираз - буде зростати, а - зменшуватись.

Дослідимо Rl як функцію d2 на екстремум:

При - термічний опір теплопередачі буде мінімальним.

Значення зовнішнього діаметра труби, яке відповідає мінімальному критичному опорові теплопередачі називається критичним діаметром і позначається dкр:

(24.11)

Якщо труба має ізоляцію зовнішнім діаметром й-^ то термічний опір для такої труби буде:

24.3 Шляхи інтенсифікації теплопередачі

Розшянемо шляхи інтенсифікації теплопередачі:

а) інтенсифікація теплопередачі шляхом збільшення коефіцієнтів тепловіддачі.

З рівняння теплопередачі Q=kF∆t слідує, що при заданих розмірах стінки і температурах рідини величиною, яка визначає тепловий потік, є коефіцієнт теплопередачі k. Але оскільки при теплопередачі k є характеристикою складною,тонеобхіднопроаналізувативсіскладові:

При =0 (длятонких стінок):

Із рівнянь видно, що коефіцієнт теплопередачі не може бути більшим найменшого а.

При а2 →∞, k→ а1

При а1→∞, k→ а2

Якщо збільшення більшого з коефіцієнтів теплопередачі (а2) практично не дає збльшення k Збільшення меншого з коефіцієнтів а1, в 2-5 разів дає збільшення k в 2,5 разів.

б) інтенсифікаціятеплопередачі зарахунокоребрення стінок.

При передачі теплоти через циліндричну стінку термічний опір і

визначається не лише коефіцєнтом тепловіддачі, але і розмірами самих поверхонь. Таким чином, якщо а мале, то термічний опір можна збільшити шляхом збільшення відповідної поверхні.

Збільшити поверхню плоскої стінки, можна шляхом оребрення. При використанні методу оребрення необхідно керуватися наступним:

якщо а1<<а2, то ореорення поверхні доцільно проводити зі сторони а1 до тих пір, поки а1,F1, не досягне значення а2,F2, Подальше збільшення поверхні F1 мало ефективне.

Теплопередача через ребристу стінку.

в) інтенсифікація теплопередачі можлива за рахунок збільшення &.І. Це можна досягнути змінюючи температуру теплоносія, або схему руху.

24.4 Принцип розрахунку теплообмінних апаратів

По принципу дії всі теплообмінники можуть бути розділені на три групи: рекуперативні,регенеративні і змішувальні.

В рекуперативних теплообмінниках теплообмін здійснюється через розділ яючи п ер егор одку.

В регенеративних теплообмінниках передача теплоти здійснюєть ся почерговим омиванням поверхні гарячимі холодним тепло носієм.

В теплообмінниках змопування теплообмін здійснюється безпосереднім змішуванням гарячого і холодного теплоносія.

Зупинимося на розрахунку рекуперативних теплообмінників, які найчастіше зустрічаються в техніц. При розрахунку теплообмінників можуть зустрітися наступні задачі:

-визначення поверхні нагріву F, яка забезпечує передачу заданої кількості теплоти;

-визначення кількості теплоти Q яке може бути передане при відомій

поверхні F

- визначення кінцевих температур теплоносіїв при відомих значеннях F і Q

Основними розрахунковими рівняннями для рішення поставлеіих задач є

рівняння теплопередачі:

Q=k∙F∙Дtсер (24.12)

і рівнданя теплового балансу:

Q=G1c1(t’1-t’’1)= G2c2(t’2-t’’2)

Де G1 і G1 -витати гарячогоі холодного теплоносіїв;

c1 і с2 -відповідно теплоємності теплоносіїв;

tr1, і ts1, а також tr2, і ts2- початкова і кінцева температура гарячого і холоди ого теплоносіїв.

Оскільки температури гарячого і холодного теплоносіїв змінюється, то відповідно змінюється різниця температур. Тому в формулі (24.12) використовують ∆Дсер- середню різницю температур. Середня різниця температур залежить від схеми руху теплоносіїв.

.Якщо робочі середовища рухаються вздовж поверхні нагріву в одному напрямі такий потік руху рідин називається прямотечійним, зустрічний паралельний рух рідин називається протигоком. Якщо в різних поверхнях нагріву є обидва вигадки руху, такий рух називається змішаним і якщо обидва теплоносії рухаються в взаємно перпендикулярних площинах, такий рух називається перехресним

Рис. 24.4.1. Схема руху рідин в теплообмінниках. а) прямотечійний; б) протитечійнщ в) змішаний; г,д) перехресний: 1 - гарячий теплоносій; 2 -холодний теплоносій.

Середній температурний напір. Розглянемо теплообмінний апарат, який працює за схемою прямотоку.

Нехай в довільному перерізі температури теплоносіїв tr, і ts Температурний напір:

t’-t’=τ (24.13)

δQ=m1cp1∙dt’= m2cp2∙dt’

або

;

Продиференціюємо рівняння (24.13), підставивши в нього значення dtr I dts

Позначимо:

Тоді:

Підставивши значення δQ із (24.15) в рівняння (24.14), одержимо:

або

Інтегруємо рівняння в межах від t’1- t’2 =τ1 до t’’1- t’’2 =τ2 і від 0 до А знаходимо:

;

Звідки:

(24.16)

Проінтегруємо рівняння (24.15):

Q=( τ1-τ2)n

і підставимо в нього значенняп з рівняння (24.16):

де τ1=t’1- t’2 =Дmax - максимальний перепад температур для даного теплообмінника.

τ2 =t’’1- t’’2 =Дmin - мінімальний перепад температур.

Середній температурний напір можна записати та

(24.17)

Аналогічну формулу можна одержати якщо розглядати протитечійну схему руху.

При Дtcp можна визначити за формулою:

(24.18)

25. Методи термодинамічного аналізу енерго-технологічних систем (ЕТС)

Енергетичний метод. Найпростішим методом термодинамічного аналізу ЕТС є енергетичний метод, оснований на першому законі термодинаміки. Цей метод дозволяє оцінити втрати енергії в технологічній системі і її окремих елементах, а також виявити участки, де втрати теплоти максимальні.

Суттєвим недоліком енергетичного методі є те, що він не враховує цінність різного виду енергії, її придатність. Тому більш широке поширення отримали ентропійнийі ексергетичний методи аналізу.

Ектроггійний метод термодинамічного аналізу оснований на першому і другому законі термодинаміки.

Дня термодинамічної оцінки ефективності системи (установки) необхідно відповісти на чотири запитання:

який ККД оборотного циклу, від яких факторів він залежить і що необхідно дляйого збільшення;

як розприділяються втрати по окремих елементах установки.

на удосконалення якої частини установки необхідно звернути увагу з метою зменшення ступ єн я необоротності.

У відповідності з щми задачами термодинамічний аналіз установки проводиться в два етапи: спочатку аналізується оборотний цикл, а потім необоротний.

ККД оборотного циклу:

Для того, щоб оцінити, наскільки даний дійсний (необоротний) цикл менш досконалій, чим теоретичний, вводять поняття відносного внутрішнього ККД циклу як відношення:

Ефективність реальної установки в цілому характеризується ефективним ККД ηв який представляє собою відношення кількості енергії (в формі теплоти або роботи), відданої зовнішньому споживачу до кількості енергії (в формі теплоти абороботи), підведеної доустановки.

В термодинамічній системі, яка складається з багатьох елементів необхідно враховувати ККД кожного елементу ηв,j

Перемноживши між собою всі ефективні ККД елементів системи на абсолютній внутрішній ККД циклу, одержимо ефективний абсолютний ККД для всієї системи.

де - добуток величин ефективних ККД які характеризують необоротні втрати в всіхп елементах системи.

ККД показує, яка доля виділеної в системі теплоти перетворюється в корисну роботу, віддану зовнішньому споживачу.

lпов=ηвq1

Очевидно, що втрати теплоти ∆q = (1-ηс) q1 представляють собою долю теплоти q1, яка не перетворилася в роботу і включає теплоту q2 передану холодному джерелу і втрати теплоти ∆qвт , обумовлені необоротністю процесів в окремих елементах установки в результаті тертя і кінцевої різниці температур, втратами в навколишнє середовище.

Очевидно:

∆qвт=lц-lпов

де lц - робота, яка виконується в оборотньому циклі.

Рис 25.2 Діаграма Грасмана- Шагурта компресійної теплонасосної установки.

В відкритих системах ексергія речовини рівна нулю, в закритих системах, коли відсутній обмінречовиничерез межі системи, рівні нулю ексергії потоку речовини і нульова ексергія.

В хімічних реакторах періодичної дії нугтьова ексергія при хімічних перетвореннях є основною.

Ексергетичний коефіцієнт корисної дії для малих машині апаратів:

Діаграма Грассмана - Шаргута. Для аналізу термодинамічних циклів, роботи машин і апаратів використовується діаграма Гзассмана-Шаргута.

Націй діаграмі кожний потік ексергії позичається полосою, ширина якої пропорційна значенню ексергії.

На рис 25.1 і 25.2 представлена схема і відповідно діаграма Цїассмана-Шаргута компресорної теппонасосної установки

В компресорі П проходить стиснення парів низькокиплячого теплоносія, телячого він поступає в конденсаторІІІ. Тут пари теплоносія охолоджуються і конденсуються при високому тиску, при цьому виділяється кількість теплоти Q", яка далі використовується для нагріву. Із апарату Ш конденсат поступає в дросель IV, де в результаті дроселювання його температурапоннжується Ддлі охолоджений конденсат поступає в випарник V, де з а рахунок теплоти Q’< Q" яка підводиться з навколишнього середовища він повністю випарюється Утворєні в випарнику пари теплоносія поступають в компресор II

На діаграмі величина втрати ексергії в кожному елементі установки відповідає зменшенню полоси ексергії і умовно позначається заштрихованим трикутником. На вході ексергія рівна ексергії електродвигуна. В елементі І проходять втрати ексергії, пов'язані з втратами в приводі. Дані по ходу відмічені втрати ексергії в окремих елементах. Втрати ексергії мають різну природу і можуть бути пов"язані із кінцевою різницею температур, із теплообміном з навколишнім середовищем, теплопровідністю, тертям в деталях і вузлах машин і тд. Діаграма дозволяє встановити де спостерігаються максимальні втрати ексергії і розробити заходило їх зниженню.

26. Шляхи економії енергоресурiв

26.1 Вторинні енергоресурси і відновлювальні джерела теплоти

Одним із важливих шляхів економії енергоресурсів є використання вторинних енергоресурсів (ВЕР) і в т.ч. і відновлювальних джерел теплоти (ВД).

Під ВЕР розуміють хімічно зв'язану теплоту, фізичну теплоту і потенціальну енергію надлишкового тиску продукції, відходів, побічних і проміжних продуктів, які утворюються в технологічних агрегатах (установках, процесах), не використовуються в самому агрегаті, але можуть бути частково або повністю використані для енергопостачання інших агрегатів. ВЕР можуть використовуватись безпосередньо без зміни ввду енергоносія або зі змною енергоносія шляхом одержання теплоти, енергії, холоду абот ехнічної роботи в утилізаційній установці.

В залежності від виду і параметрів робочих тіл відрізняють чотири основних напрямки використання ВЕР:

- паливне - безпосереднє використ ання горючих компонентів в якості палива;

- теплове-використання теплоти, яку одержуємо зарахунокВЕР;

- ситове ( використання механічної та електричної енергії, яка виробляється за рахунок ВЕР;

- комбіноване;

Найбльші джерела ВЕР мають підприємства чорної і кольорової металургії, хімічної і нафтопереробної промисловості.

В даний час тегпота високого потенціалу в загальній витраті корисної енергії складає 26% Із загальної виграти теплоти високого потенціалу 33% йде на плавку, 40% на нагрів і 20% на випалювання руд.

Приблизно 52% всієї корисної енергії в народному господарстві витрачається в виді теплоти середнього (373-623 К) потенціалу і на її одержання витрачається 38% всіх паливно-енергетичних ресурсів. Ця теплота використовується для задоволення технологічних потреб. Основними енергоносіями,які забезпечують середнії низькотемпературні процеси є пара і гаряча вода.

Для утилізації ВЕР найбільш поширеними в різних галузях народного господарства установками є котли-угилізатори, які використовують високо потенціальні димові гази промислових печей і технологічні гази хімічного виробництва, а такожводяні економайзери для нагріву живильної води котлів і повітрепідігрівачів для нагріву дуттєвого повітря.

Котли-утилізатори забезпечують велику економію палива шляхом генерування енергетичної і технологічної пари, а також нагріву води.

Можлива виробітка тегпоти в виді пари або гарячої води в утилізаційній установці за рахунок теплових ВЕР в загальному вигляді визначається за формулою

QT=(h1G1- h2G2)β(1-ζ)

а можлива виробітка холоду

Qx= QTε

де G1 і G2 -кількість енергоносія на вході і на виході.

h1, h2- ентальпія

β - враховує невідповідність годин роботи і режиму утипізаційної установки і джерела ВЕР.

ζ - коефіцієнт, який враховує втрати;

ε - холодильний коефіцієнт.

Можлива виробітка електроенергії в утипізаційній турбіні за рахунок ВЕР.

W=mВЕР∙τ∙l∙ηoi∙ηM∙ηI∙

де mВЕР∙-часова кількість енергоносія,яка має надлишковий тиск.

τ -число годинроботн;

l -робота ізоентропного розширення;

ηoi∙ - внутрішній відносний ККД турбіни;

ηM - механічний ККД;

ηI∙ -ККД генератора.

26.2 Відновлювані джерела теплоти

Відновлювальними джерелами теппоти є енергія сонця, енергія вітру, припливів і відпливів і т.д.

Таблиця 26.1. Природні ресурси енергії і їх величина.

Назва

Величина (кВт∙г)

Невідновлювальні джерела теплоти

Термоядерна енергія

100000000∙1012

Ядерна енергія ділення

547000 012

Хі мічна енергія корисних копалин органічного походження

55000 1012

Внутрішнє тепло земні

134 1012

Щорічно поповнювальні ресурси

Еіергія морських приплив в

70000 1012

Енергія падаючого на землю сонячного проміння

58000∙1012

Енергія сонячного проміння, яке акумулюється в верхніх шарах атмосфери (150-200 км) в вигляді атмосферних кисню і азоту.

0,012∙1012

Енергія вітру

1700∙1012

Енергія рік

18∙1012

Всі види енергії, які виробляються на землі складають 5% від поступаючої на землю сонячної радіації. Температура в центрі сонця досягає 10 °С. Температура на поверхні сонця 5500°С.

Сонячна енергія є виключно чистим джерелом енергії. її використ ання не зв'язано з забрудненням навколишнього середовища. Трудність її використання пов'язана із технічними проблемами її перетворення Сонячна радіація дуже розсіяна і має малу густину.

Одним із напрямків використання сонячної енергії є її перетворення в теплову.

Сонячні печі мають параболічний рефлектор. При діаметрі зеркала 1,5 м в тропічних умовах потужність, яку получають в фокусі такого пристрою складає 0,5 -1 кВт. Температура встановлюється на протязі години.

Дня одерлання дуже високих температур використовують декілька параболічних дзеркал (рис 22.2.1), таким чином, що вони мають спільний фокус. В системах, які складаються з декількох дзеркал додатково встановлюється плоске діеркало — геліостат, за допомогою якого слідкують з а сонцем і направляють проміннянанерухомідзеркала.

Рис. 22.2.1. Пристрій дляперетворення сонячної енергії в т еппову. 1 -рефлектор.

В лабораторії сонячної енергії Французького національного науково-дослідного центру, розміщеній в західних Піренеях за допомогою сонячної печі з дзеркалом діаметром біля 10 метрів, булипроведені роботи по очистці особливо тугоплавких металів.

Тепер встановлено параболічне діеркало діаметром 50 м. Воно виготовлене із 8000 невеликих дзеркал В фокусі одержують зображення сонця в виді кругу діаметром 50см. Таке дзеркало може забезпечити потужність 1200 кВт. Матеріал в центрі розппавляється і температура досягає 3000°С. За рахунок того,що тіглі обертаються, матеріал не виливається Тйким чином розплавляються оксиди кремнію і цирконію.

Використовують сонячну енергію для опалення, арячого водопостачання, нагріву води в басейнах. Складовою частиною є пластина-поглинач. Вода, чи повітря яке знаходиться в контакті з пластиною-поглиначем нагріваються.

Одним із шляхів використання сонячної енергії є акумулюання з можливістю забезпечення його рівномірного споживання.

Для акумулювання тепла необхідно забезпечити рівномірний нагрів. Використовують басейн з водою, парафін, камінь, шоуберову сіль Nа2SО410Н2O, яка плавиться при температурі 32°С, при цьому затрачується на руйнування кристалічної решітки 67 Вт∙г/кг.

26.3 Розробка раціональної схеми підприємства

Основним напрямком про розробці раціональної теплової схеми підприємства харчової промисловості є:

Вибір технологічного режиму з можливою низькою температурою процесів нагрівання.

Розвиток енерготехнологічного комбінування з метою найбільш повного використання генерованих енергоносіїв в виробничому процесі.

Основними напрямками енерготехнологічного комбінування є наступні: Комбінуванняпаровогокотлаі сушарки з метою використання димових газів для сушки продуктів, які використовуються в якості фуражу (сушка жому).

Комбінування парового котла із абсорбційною холодильною машиною з метою використання димових газів в якості теплоносія (птвоварені заводи).

Комбінування газотурбінної установки і сушки. Його метою є використання теплової енергії від палива і використання димових газів для скіпки.

Комбінування вистарної установки і скіпки. Для нагріву вологого гювітря в калорифері сушарки в якості енергоносія може бути використана пара або конденсат від випарної установки або те і інше одночасн о.

Комбінування випарної установки і ректифікаційної установки без посер едньо зв'язаних на лінії роз чину.

Комбінування випарної і абсорбційної холодильної машини. Ця комбінація може бути використана на цукрових заводах для зберігання буряку.

Комбінування випарної установки і вакуум кристалізаторів.

Міністерство освіти і науки України

Тернопільський державний технічний університет імені Івана Пулюя

Кафедра обладнання харчових технологій

МЕТОДИЧНІ ВКАЗІВКИ

до лабораторної роботи № 1

«Дослідження процессу адіабатного витікання газу (повітря) через сопло».

Тернопіль 2003

Дослідження процесу адіабатного витікання газу (повітря) через сопло

Мета роботи: поглибити знання в питаннях витікання газу (повітря), експериментальне визначити розхід і швидкість витікання повітря через сопло при різних тисках перед ним.

Теоретичні основи витікання

Витікання - це процес прискореного руху і азу в коротких каналах змінного перерізу.

Канал, в якому збільшується швидкість струмини І падає тиск робочого тіла, називають соплом, В соплах потенціальна енергія газу перетворюється в кінетичну енергію потоку, їх використовують в парових і газових турбінах, реактивних двигунах, турбо- і пароструменевих компресорах.

Канап, в якому сповільнюється рух робочого тіла і збільшується його тиск, називають дифузором. В дифузорах кінетична енергія потоку газу перетворюється в його потенціальну енергію, їх використовують в турбо- і пароструменевих компресорах, а також в вентиляторах.

Рухаючись в горизонтальному каналі, газ виконує роботу подоланая зовнішнього тиску о\ру) і зміни кінетичної енергії потоку:

В цьому випадку рівняння пертого закону термодинаміки мас вигляд (для газового потоку):

dg=dU+d(pv)+wdw=di+wdw (1.1)

де: g - питома теплота, то сприймається газом, Вт/м2;

U - внутрішня енерпя газу, Дж/кг;

р - тиск газу. Па;

v - питомий об'єм газу, м3/кг;

w - швидкість потоку, м/с;

і - ентальпія газу, Дж/кг. Рівняння першого закону термодинаміки мас вигляд:

dg-di-vdp (1.2)

Прирівнюючи формули (1,1) і (1,2) одержуємо:

wdw=-vdp (1,3)

Це значить, шо приріст кінетичної енергії визначається роботою зміни тиску vdp; при збільшенні швидкості потоку (dw>0) тиск газу (dр<0) зменшується, і навпаки.

При русі газу в каналі кінцевої довжини (рис. 1.1, а) його параметри змінюються від v1, р1, Т1, до vу, ру, Ту (рис. 1.1, б). Робота зміни тиску - в рv - координатах зображується площею М1УКМ (рис 1.1, в).

В соплах і дифузорах контакт газу з каналом короткочасний, тому обміном з навколишнім середовищем нехтують. Це дозволяг розглядати витікання як адіабатний процес (dg=0). В цьому випадку рівняння (1.1) приймає вигляд wdw=-dі, а для каналу кінцевої довжини (сопла) після інтегрування:

(1.4)

це: w1,wy - швидкість газу відповідно на вході і в гирлі каналу, м/с;

і1, іу - ентальпія відповідно на вході і в усті каналу, Дж/кг, Для сопел wу >>w1, тому величиною w1 частіше всього нехтують. В цьому випадку

або (1.5)

якщо ентальпія виражена в кілоджоулях на кілограм (кДж/кг).

Для газів що повністю або приблизно підпорядковуються рівнянню рv=RТ і справедливі умови і=СрТ, Сp=RК/(К-1), рівняння (1.5) приймає вигляд:

(1.6)

де: К - показник адіабати, К=Сp/Сv;

R - питома газова стала, Дж/кг К,

Якшо відома площа перерізу в усті сопла f, то із умови нерозривності потоку масовий розхід газу:

(1.7)

з врахуванням (1.7):

(1.8)

Із (1.7) і (1.8) слідує, шо для даного газу (k-соnst) з початковими параметрами р1, і V1, швидкість його потоку і розхід визначається тільки відношенням тисків Рv/Р1=β. Так швидкість і розхід зростають при збільшенні Р1. Це досягається збільшенням абсолютного тиску Р, середовища, з якого витікає газ (див. рис. 1.1 а). При цьому тиск в усті сопла Ру рівний тиску за соплом P2: до тих пір, поки швидкість потоку не досягне швидкості поширення звуку а в даному середовищі. З цією швидкістю поширюються пружні хвилі тиску (розрідження). Тиск Р2, при якому (wv досягає швидкості звуку, називають критичним і позначають Ркр а відношення цього тиску до тиску Р1- критичним відношенням Ркр / Р1= β кр

Хвиля зменшення тиску в усті сопла, яке виникає при Р2 < Ркр (β < β кр) не може поширюватись в соплі назустріч течії, так як а=w, як наслідок для всіх значень Р2 < Ркр (β < β кр) В усті сопла тиск Р2 =Ркр,. Тому, якщо витікання газу докритнчне (β < β кр), в рівняннях (1.6) і (1.8) замість відношеннч Рv / Р1 використовують величину Р2 / Р1= β,, а якщо витікання критичне і зверхкритичне (β < β кр) величину β кр=β кр /Р1. Залежність wv =f(β) i M =f1(β) зображені на рис. 1,2.

Рис 1.2

В рівняннях (1.6) і (1.8) для двоатомних газів К=1,4 і β кр =0,528, для багатоатомних газів К =1,3, а β кр =0,546.

Витікання газу супроводжується помітними втратами кінетичної енергії потоку на тертя між шарами газу і газу зі стійками каналу.

Із-за вказаних втрат кінетичної енергії дійсна швидкість витікання w w д, менша теоретичної w. Величину

φ= wд/ w

називають швидкісним коефіцієнтом сопла, а відношення дійсного масового розходу газу Мд до теоретичного М - коефіцієнтом розходу μ

μ = Мд / М (1.10)

Дійсний масовий розхід за 1 с. визначають, використовуючи швидкість витікання і питомий об’єм vд газу в усті сопла:

Мд=fy

або безпосереднім вимірюванням.

Лабораторна установка

Характеристики

Тип файла
Документ
Размер
93,7 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее