86036 (597858)

Файл №597858 86036 (Линейные уравнения и их свойства)86036 (597858)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Тема 1. Система линейных уравнений

В общем случае система линейных уравнений с неизвестными имеет вид

(1)

Через обозначены неизвестные, подлежащие определению, величины , называемые коэффициентами системы, и величины , называемые свободными членами, считаются известными. Решением системы (1) называют такую совокупность чисел , которая при подстановке в систему (1) на место неизвестных обращает все уравнения системы в тождества. Система уравнений (1) либо не имеет решения, либо имеет единственное решение, либо имеет бесчисленное множество решений. Две системы линейных уравнений называются эквивалентными, если решение одной из них является решением другой и наоборот. Коэффициенты системы образуют матрицу, которую называют основной матрицей системы

.

Если , то матрица является квадратной и ее определитель называется определителем системы. Если определитель квадратной системы уравнений то система имеет единственное решение, определяемое по формулам, называемых формулами Крамера:

Здесь - определитель системы, определитель матрицы, получаемой из матрицы заменой го столбца столбцом ее свободных членов.

Пример 1. Решить систему линейных уравнений

Решение. Найдем определитель системы

=

Далее вычислим определитель , заменив первый столбец матрицы системы на столбец свободных членов

Аналогично находим определители :

Отсюда по формулам Крамера находим решение системы

Общую систему линейных уравнений вида (1) можно решить методом Гаусса - методом последовательного исключения неизвестных. Исключение неизвестных методом Гаусса удобно выполнять, осуществляя преобразования не с самими уравнениями, а с матрицей их коэффициентов, к которой справа добавлен столбец свободных членов

Полученную матрицу называют расширенной матрицей системы.

Элементарными преобразованиями строк матрицы называют:

Умножение всех элементов строки на число, не равное нулю.

Перестановка строк матрицы.

Прибавление к элементам строки соответствующих элементов другой строки, умноженных на общее произвольное число.

Метод Гаусса заключается в том, чтобы с помощью элементарных преобразований строк основную матрицу системы привести к ступенчатому (или треугольному) виду. Если вернуться к уравнениям, то это означает, что неизвестная содержится только в первом уравнении, неизвестная - только в первом и втором уравнении и т. д. Таким образом, неизвестные системы частично исключаются из исходных уравнений системы, а полученная новая система уравнений является эквивалентной исходной системе. Рассмотрим решение методом Гаусса на примерах.

Пример 2. Решить систему уравнений

(2)

Решение. Расширенная матрица системы имеет вид

(3)

Поменяем местами первую и вторую строку в матрице (3), чтобы получить

(в этом случае упрощаются последующие вычисления).

~ (4)

Символ “~” обозначает эквивалентность матриц. Умножим первую строку полученной матрицы (4) на число (-3) и прибавим соответственно к элементам второй строки, далее первую строку матрицы (4) умножим на число (-5) и прибавим к элементам третьей строки этой матрицы. В результате получим матрицу, которой соответствует система уравнений, содержащая неизвестную только в первом уравнении

~ . (5)

Так как в матрице (5) , то, умножая вторую строку этой матрицы на число (-5) и прибавляя ее к третьей строке, получим основную матрицу треугольного вида. Для упрощения разделим элементы последней строки на число (-11):

~ ~ (6)

Расширенной матрице (6) соответствует следующая система уравнений, эквивалентная исходной системе (2)

Отсюда из третьего уравнения получаем . Подставляя найденное значение во второе уравнение, определяем неизвестную :

Наконец, после подстановки найденных значений в первое уравнение, находим неизвестную : Таким образом, решение системы единственное:

Пример 3. Решить систему уравнений

(7)

Решение. Запишем и преобразуем расширенную матрицу системы (7)

~ ~

~ ~ ~

~ ~ .

Расширенная матрица, полученная на последнем шаге путем вычитания из элементов четвертой строки соответствующих элементов третьей строки, содержит нулевую строку и имеет ступенчатый вид. Отсюда следует, что исходной системе уравнений эквивалентна система из трех уравнений с 4 неизвестными

Неизвестную перенесем в правые части уравнений

Отсюда определяем

Задавая переменной произвольное значение , найдем бесконечное множество решений системы

Если расширенная матрица системы приведена к ступенчатому виду, когда в нулевой строке основной матрицы свободный член отличен от нуля, то система не имеет решения. Например, последняя строка имеет вид . Тогда соответствующее уравнение системы привелось к неверному равенству

Пример 4. Предприятие выпускает три вида товаров, при производстве которых используется три типа ресурсов: рабочая сила, сырье, оборудование. Нормы расхода каждого из них (в условных единицах) на производство единицы каждого товара и объем ресурсов на 1 день заданы таблицей 1.

Таблица 1

Вид

ресурсов

Норма расхода ресурсов

на производство ед. товара

Объем

ресурсов

на 1 день

1 вид

2 вид

3 вид

Рабочая сила

1

1

2

800

Сырье

3

2

4

1700

Оборудование

2

1

3

1100

Найти ежедневный объем выпуска каждого товара.

Решение. Пусть - ежедневный выпуск соответственно товаров 1,2 и 3-го вида. Тогда в соответствии с нормами расхода ресурсов каждого типа имеем систему линейных уравнений, содержащих неизвестные

Решим ее методом Гаусса.

~ ~

Отсюда находим , т.е. предприятие ежедневно выпускает 100 ед. товаров 1-го вида, 300 ед. товаров 2-го вида и 200 ед. товаров 3-го вида.

Задача для контрольной работы

Кондитерская фабрика специализируется на выпуске изделий трех видов. При этом используется сырье трех типов . Нормы расхода каждого из них на одно изделие и общий объем расхода сырья на 1 день заданы таблицей 2. Найти ежедневный объем выпуска каждого вида изделия, построив систему линейных уравнений и решая ее методом Гаусса и по формулам Крамера.

Таблица 2

Номер

варианта

Вид

сырья

Норма расхода сырья на 1 изделие

Объем

расхода сырья

Изделие 1

Изделие 2

Изделие 3

1

3

2

4

2000

1

3

2

1100

2

5

1

1200

2

4

1

3

1800

1

2

5

2500

2

1

2

1200

3

2

3

4

1400

3

1

3

1000

1

2

3

1000

4

1

5

2

1700

2

3

1

1100

3

1

4

1700

5

2

2

4

2200

1

3

1

1300

3

1

2

1600

6

1

3

3

1500

3

1

1

900

2

2

4

1700

7

4

2

1

1200

3

3

2

1600

1

2

1

900

8

1

2

2

1000

3

1

2

1200

4

3

4

2200

9

2

2

3

1000

1

3

1

700

3

1

2

700

10

1

3

4

2700

2

1

3

1900

3

2

1

1600

Тема 2. Векторная алгебра

Характеристики

Тип файла
Документ
Размер
5,38 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6508
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее