85873 (597843), страница 11

Файл №597843 85873 (Теория вероятностей и математическая статистика) 11 страница85873 (597843) страница 112016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 11)

Х

Характеристическая функция – комплексно-значная функция действительного аргумента, являющаяся математическим ожиданием функции случайной величины , где , то есть: .

Ч

Частная функция распределения – функция распределения любой k-той компоненты вектора . Определение частной функции распределения основано на свойстве согласованности функции распределения многомерной случайной величины, например, если n=2, то и .

Частные распределения компонент случайного вектора - распределения вероятностей компонент вектора, являющихся скалярными случайными величинами. Частное распределение каждой компоненты получается как проекция вероятностной функции вектора на соответствующую координатную ось. Если и P вероятностная функция вектора, то частное распределение компоненты определяется равенством: , где B( ). Аналогично, частное распределение компоненты определяется равенством: , где B( ).

Ц

Центральная предельная теорема (ЦПТ) – совокупность теорем, в которых на последовательность случайных величин , налагаются условия, при которых их центрированная и нормированная сумма сходится по распределению к нормальному закону N(0;1).

Э

Эффективная оценка – точечная оценка числовой характеристики, имеющая наименьшую дисперсию.

  1. Вопросы для тестирования по курсу

«Теория вероятностей и математическая статистика»

  1. Противоположным событием случайному событию будет событие: а) событие ; б) событие ; в) событие .

2.Вероятности наступления случайных событий и равны и . Эти случайные события: а) совместные; б) несовместные; в) взаимно противоположные.

3.Гипотезы, формулируемые при применении формулы полной вероятности, должны быть: а) попарно независимыми; б) попарно несовместными; в) взаимно противоположными.

4.Аддитивная функция множеств и удовлетворяет условию: а) всегда , если ;

б) всегда , если ;

в) всегда , если .

5. Требование счётной аддитивности числовой функции множеств это: а) аксиоматическое требование, объявляемое при определении вероятностной функции;

б) необходимое требование, объявляемое при определении независимости случайных величин;

в) достаточное требование, выполнение которого проверяется при определении алгебры борелевских множеств.

6. Случайная величина это: а) случайный результат любого опыта;

б) измеримое отображение множества элементарных исходов во множество чисел;

в) вероятность наступления случайного события при однократном проведении опыта.

7. Плотность вероятности это:

а) функция, для которой при любых неотрицательных a и b интеграл принимает конечные значения;

б) любая функция, для которой справедливо ;

в) любая функция, которая удовлетворяет двум условиям: для любого x, , и .

8. Математическое ожидание случайной величины это:

а) наиболее вероятное значение случайной величины;

б) среднее значение случайной величины;

в) ожидаемое значение случайной величины.

9. Дисперсия случайной величины это:

а) разброс возможных значений случайной величины около её математического ожидания;

б) мера разброса возможных значений случайной величины около её математического ожидания;

в) мера связи возможных значений случайной величины и её математического ожидания.

10. Дисперсия разности случайных величин и равна:

а) , если случайные величины – независимые;

б) , если случайные величины – несовместные;

в) , если случайные величины – произвольные;

11. Независимость случайных величин определяется исходя из:

а) невозможности определения закона совместного распределения компонент случайного вектора;

б) равенства закона распределения случайного вектора произведению законов распределения его компонент;

в) невыполнения всех условий теоремы Чебышева.

12. Функция Лапласа используется при:

а) определении величины разброса значений случайной величины при проведении большого числа наблюдений;

б) определении вероятностей событий, которые могут наступить при проведении больших серий повторных независимых испытаний;

в) при вычислении значений статистических оценок коэффициентов функции регрессии.

13. Функция Лапласа применяется при:

а) определении математического ожидания нормально распределённой случайной величины;

б) проверке статистической гипотезы о виде закона распределения случайной величины;

в) вычислении вероятностей наступления случайных событий, определяемых нормально распределённой случайной величиной.

14. Коэффициент линейной корреляции используется для определения:

а) величины разброса значений одной из случайных величин около математического ожидания другой случайной величины;

б) силы статистической связи между значениями случайных величин;

в) меры зависимости условного распределения одной из компонент случайного вектора от частного распределения другой компоненты.

15. Функция регрессии это:

а) функция, описывающая изменение значений одной из случайных величин в зависимости от изменения закона распределения вероятностей другой;

б) функция, описывающая изменение значений условного математического ожидания одной из случайных величин в зависимости от изменения значений другой случайной величины;

в) функция, описывающая зависимость условных математических ожиданий компонент двумерной случайной величины.

16. Закон больших чисел – это:

а) совокупность теорем, в которых на последовательность случайных величин накладываются условия, при которых их центрированная и нормированная сумма с вероятностью близкой к единице принимает значения, мало отличающиеся от нуля;

б) закон, определяющий распределение вероятностей больших отклонений от нуля;

в) закон, оценивающий большие отклонения значений случайных величин от их математического ожидания.

17. Остаточная дисперсия:

а) оценивает разброс значений одной из компонент двумерной случайной величины около её математического ожидания, вызванный её внутренними свойствами;

б) оценивает разброс значений одной из компонент двумерной случайной величины около математического ожидания другой компоненты;

в) оценивает разброс значений центрированной компоненты двумерной случайной величины около условного математического ожидания другой компоненты.

18. Для определения точечных оценок числовых характеристик случайной величины необходимо:

а) иметь выборку из генеральной совокупности;

б) построить гистограмму распределения относительных частот;

в) применить метод наименьших квадратов.

19. «Рассматривается последовательность независимых, как угодно распределённых случайных величин, дисперсии которых ограничены одной общей константой,…». Эти требования к случайным величинам формулируются:

а) в теореме Леви;

б) в теореме Ляпунова;

в) в теореме Чебышева.

20. «Состоятельность» это:

а) одно из требований, предъявляемое к точечным оценкам числовых характеристик случайных величин;

б) требование к статистикам, необходимым при определении границ доверительного интервала;

в) требование, выполнение которого позволяет минимизировать вероятность ошибки первого рода при статистической проверке гипотез.

21. Статической оценкой математического ожидания случайной величины является:

а) нормированная сумма наблюдаемых значений случайной величины;

б) среднее арифметическое элементов выборки наблюдаемых значений случайной величины;

в) среднее арифметическое максимального и минимального значений элементов выборки.

22. Доверительный интервал это:

а) интервал наиболее вероятных значений случайной величины;

б) интервал значений вероятностей практически достоверных событий;

в) интервал, в котором с доверительной вероятностью находится числовая характеристика случайной величины.

23. Центральная предельная теорема это:

а) терема о предельном распределении последовательности центрированных случайных величин;

б) совокупность теорем, в которых на последовательность случайных величин накладываются условия, при которых их центрированная и нормированная сумма подчиняются распределению мало отличающемуся от нормального.

в) общая теорема о существовании центрированного распределения вероятностей для предельных значений случайных величин.

24. Критерий статистической проверки гипотез является:

а) случайной величиной, значения которой зависят от элементов генеральной совокупности, попавших в выборку;

б) числовой характеристикой эмпирической случайной величины;

в) областью возможных значений проверяемой гипотезы.

25. Критерий статистической проверки гипотез это:

а) случайная величина, значения которой позволяют подтвердить или опровергнуть основную гипотезу;

б) случайная величина, распределение которой зависит от формулировки проверяемых гипотез;

в) случайная величина, по распределению вероятностей которой проверяется гипотеза о независимости основной и альтернативной гипотез.

26. Теорема Чебышёва является предельной теоремой:

а) для последовательности дискретных случайных величин;

б) для последовательности непрерывных случайных величин;

в) для последовательности случайных величин, независимо от типа законов распределения их вероятностей.

27. По результатам проверки по элементам одной и той же выборки значений двух гипотез

,

,

где и - разные функции распределения, приято решение о том, что нет оснований отклонять и первую, и вторую гипотезу.

а) При применении критерия Пирсона такого решения не может быть.

б) При применении критерия Пирсона такое решение может быть.

в) Такое решение может быть только в том случае, если случайная величина принимает только положительные значения.

ОТВЕТЫ К ТЕСТАМ

Характеристики

Тип файла
Документ
Размер
8,41 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее