85873 (597843), страница 10

Файл №597843 85873 (Теория вероятностей и математическая статистика) 10 страница85873 (597843) страница 102016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 10)

Аддитивная функция – функция множеств- элементов алгебры A, для которой из условия ø следует, что .

Алгебра множеств – система подмножеств A множества , элементы которой удовлетворяют следующим требованиям:

а) A; б) для любых A и B, принадлежащих A, следует, что A и A; в) если A, то A.

Б

Борелевская алгебра множеств B( ) – система подмножеств множества действительных чисел R, получающаяся путём применения операций объединения, пересечения и дополнения к элементам системы , где a и b – произвольные действительные числа.

В

Вероятностное пространство <,A, P> - тройка объектов, где

- множество элементарных исходов;

A - -алгебра случайных событий;

P – вероятностная функция.

Д

Дискретная случайная величина – случайная величина, областью возможных значений которой является не более чем счётное множество D действительных чисел . Закон распределения вероятностей дискретной случайной величины задаётся путём определения набора положительных чисел , таких, что . Здесь: .

Дисперсия случайной величины - мера разброса значений случайной величины около её математического ожидания.

Доверительный интервал - интервал, в котором с вероятностью, не меньшей чем , находится значение неизвестной числовой характеристики , то есть интервал, для которого справедливо: .

З

Закон больших чисел (ЗБЧ) – совокупность теорем, в которых на последовательность случайных величин , налагаются условия, при которых их среднее арифметическое сходится по вероятности к постоянной величине – среднему арифметическому их математических ожиданий: .

И

Измеримое пространство - пара объектов, где - множество элементарных исходов, A - алгебра случайных событий, на которой вводится числовая функция множеств , которая при выполнении условий нормированности и аддитивности, называется вероятностной мерой множества A.

К

Классическое определение вероятности – определение вероятности наступления случайного события, основанное на равновозможности реализации элементарных исходов конечного множества элементарных исходов . Если мощность множества равна , а мощность подмножества A, являющегося случайным событием, равна , то по классическому определению вероятности вероятность наступления случайного события A будет равна .

Ковариационный момент – смешанный центральный момент второго порядка двумерной случайной величины:

.

Компонента случайного вектора – скалярная случайная величина , являющаяся проекцией случайного вектора на k-тую координатную ось . То есть, если и - проектор, отображающий в , то является композицией отображений:

.

Коэффициент линейной корреляции – мера статистической силы связи между случайными величинами. Вычисляется по формуле . Применяется в тех случаях, когда статистическая связь имеет линейный характер.

Критерий проверки основной гипотезы – случайная величина, статистика элементов выборки, закон распределения вероятностей которой зависит от предполагаемой гипотезы.

М

Математическое ожидание – числовая характеристика случайной величины, . Математическое ожидание есть среднее значение случайной величины . Интерпретируется как координата центра тяжести единичной массы распределённой на числовой оси.

Множество элементарных исходов – множество, элементами, которого является все возможные элементарные исходы. В результате проведения испытания всегда реализуется один, и только один элементарный исход.

Н

Начальный момент k-того порядка – числовая характеристика случайной величины, являющаяся значением абсолютно сходящегося несобственного интеграла от функции по функции распределения случайной величины, то есть: .

Независимость случайных величин. Случайные величины и называются независимыми, если закон распределения вероятностей одной из них не зависит от другой случайной величины.

Точнее: пусть случайные величины и являются компонентами двумерной случайной величины , принимающей значения в . Эти компоненты называются независимыми, если для любого множества B, B( 2), представимого как декартово произведение , и , будет справедливо:

,

Где и - частные вероятностные функции компонент.

Независимость случайных величин непрерывного типа – Случайные величины непрерывного типа и (компоненты двумерного случайного вектора) будут независимыми тогда, только тогда, когда для любой пары выполняется равенство , где - плотность вероятности двумерного случайного вектора , а и - плотности вероятностей его компонент и .

Независимость случайных величин дискретного типа – Случайные величины дискретного типа и (компоненты двумерного случайного вектора) будут независимыми тогда, только тогда, когда для любой пары выполняется равенство , где , а и .

Независимость случайных событий. Случайные события называются независимыми, если условная вероятность наступления любого из них равна его безусловной вероятности: или .

Непрерывная случайная величина – случайная величина, областью возможных значений которой является множество D мощности континуум и положительной меры Лебега. Закон распределения вероятностей непрерывной случайной величины задаётся путём определения на этом множестве плотности вероятности - кусочно-непрерывной, неотрицательной функции, такой что .

Несмещённость точечной оценки. Точечная оценка числовой характеристики называется несмещённой, если .

О

Остаточная дисперсия – мера разброса значений одной из компонент (например ) двумерной случайной величины около её математического ожидания, вызванного внутренними свойствами этой компоненты. При линейном виде статистической связи между компонентами величина остаточной дисперсии компоненты равна , где - коэффициент линейной корреляции между компонентами и .

Ошибка I рода – отклонение верной гипотезы . Возникает в том случае, когда при справедливости в реальности гипотезы наблюдаемое значение критерия попадает в критическую область . Вероятность ошибки I рода равна .

Ошибка II рода – принятие неверной гипотезы . Возникает в том случае, когда при справедливости в реальности гипотезы наблюдаемое значение критерия попадает в область допустимых значений . Вероятность ошибки II рода равна .

П

Повторные независимые испытания – серия одинаковых испытаний, в каждом из которых с постоянными вероятностями p и q может произойти только одно из взаимно противоположных событий A или .

Плотность вероятности – неотрицательная, кусочно-непрерывная функция, удовлетворяющая условию: . Плотность вероятности описывает распределение вероятностей случайной величины непрерывного типа.

Р

Распределение - (распределение Пирсона) распределение вероятностей случайной величины , где все независимые случайные величины, имеющие нормальное распределение вероятностей N(0;1).

Распределение Стьюдента – (t-распределение) распределение вероятностей случайной величины , где все независимые случайные величины, имеющие нормальное распределение вероятностей N(0;1).

Распределение Фишера-Снедекора – (F-распределение) распределение вероятностей случайной величины .

Ряд распределения – таблица, состоящая из двух строк, с помощью которой задаётся закон распределения дискретной случайной величины:

.

Где или ; . Всегда .

С

Свёртка функций распределения – несобственный интеграл, определяющий функцию распределения случайной величины, являющейся суммой независимых случайных величин. Если , то функция распределения будет равна: , где и - функции распределения случайных величин-слагаемых.

Состоятельность точечной оценки. Точечная оценка числовой характеристики называется состоятельной, если она сходится по вероятности к этой точечной оценке, то есть: .

Статистика – любая функция элементов выборки : .

Сходимость по вероятности. Последовательность случайных величин сходится по вероятности к случайной величине (обозначение: ), если выполняется условие .

Сходимость по распределению. Последовательность случайных величин сходится по распределению к случайной величине (обозначение: ), если соответствующая последовательность функций распределения слабо сходится к функции распределения случайной величины ( ).

У

Условная вероятность - вероятность наступления случайного события A, вычисленная при предположении, что случайное событие B произошло. Определяется по формуле: .

Условная плотность вероятности - плотность вероятности условной случайной величины , является законом распределения вероятностей второй компоненты при любом фиксированном значении первой компоненты. Определяется по формуле: , где - плотность вероятности двумерной случайной величины , - частная плотность вероятности первой компоненты .

Ф

Функция распределения – функция , описывающая изменение вероятности случайного события при изменении x, то есть . Определяя функцию распределения , мы задаём закон распределения вероятностей случайной величины .

Функция распределения вектора - функция , описывающая изменение вероятности случайного события , где , при изменении , то есть . Определяя функцию распределения , мы задаём закон распределения вероятностей случайного вектора .

Функция регрессии – функция, описывающая зависимость значений условных математических ожиданий одной из компонент двумерной случайной величины от другой компоненты. Функция - функция регрессии компоненты на изменение компоненты . Функция - функция регрессии компоненты на изменение компоненты .

Характеристики

Тип файла
Документ
Размер
8,41 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее