85838 (597839), страница 6

Файл №597839 85838 (Ряды Фурье. Интеграл Фурье. Операционное исчисление) 6 страница85838 (597839) страница 62016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

где D – треугольная область, задаваемая системой неравенств

Изменив порядок интегрирования в двойном интеграле, получим

.

Введем вместо t новую переменную . Тогда

,

что и требовалось доказать.

Пример 1. Найти оригинал , если его Лаплас-образ .

Решение. Представим данный Лаплас-образ в виде произведения двух изображений, для которых известны оригиналы:

.

Так как

,

то по теореме 1 имеем

.

Упражнение 1. Доказать, что свертка линейна по каждой компоненте:

,

где а и b – постоянные.

Упражнение 2. Найти свертку функций и .

Интегрирование и дифференцирование оригиналов. Для интегрирования и дифференцирования оригиналов справедливы следующие теоремы.

Теорема 2. Если то .

Для доказательства используем формулу (16.1) и теорему 1. Тогда

.

Теорема 3. Если и – оригиналы и , то

. (16.2)

В самом деле, исходя из формулы Ньютона – Лейбница, в силу (16.1) будем иметь

.

Тогда по теореме 1

.

Отсюда , что и требовалось доказать.

Применив формулу (16.2) дважды, получим

и т.д. В частности, если , то , т.е. в этом случае дифференцирование оригинала сводится к умножению его изображения на p.

Дифференцирование и интегрирование изображений. Без доказательства примем следующие свойства преобразования Лапласа:

1. Если – оригинал с показателем роста , то его изображение имеет в области производные любых порядков.

2. При том же условии пределы, производные и интегралы от в области можно находить, выполняя соответствующие операции под знаком интеграла (14.3).

Теорема 4. Если , то , т.е. дифференцирование изображения сводится к умножению оригинала на . Действительно, дифференцируя (14.3) по параметру p, получим

.

Справа стоит интеграл Лапласа для функции , следовательно,

,

что и требовалось доказать.

Применив несколько раз теорему 4, получим

.

Теорема 5. Если – оригиналы и , то

,

т.е. интегрирование изображения в указанных пределах сводится к делению оригинала на . Так как в силу (14.3) имеем , то

.

Поскольку при и , то

.

Рассмотрим функции

.

По теореме 4 имеем

.

Так как , то по теореме 5

.

Точно так же получим

.

Применяя теорему 2, найдем изображение интегрального синуса

.

Следствия из теорем 1-5 приведем с доказательствами.

Следствие 1. Если сходится интеграл

, (16.3)

то

. (16.4)

Из сходимости интеграла (16.3) следует, что изображение непрерывно в замкнутой области . Переходя к пределу в (14.3) при , приходим к требуемому результату.

Следствие 2. Если сходится интеграл , то

.

Так как , то в силу (14.4)

.

Для справедливо равенство

.

Следствие 3. Если – оригиналы, то . Действительно, по теореме 3

. (16.5)

С другой стороны, (см. § 14). Переходя к пределу в (16.5) при , получим требуемый результат.

Следствие 4. Если – оригиналы и существует конечный предел , то

. (16.6)

Исходим из равенства

. (16.7)

В силу (14.4) и теоремы 3

. (16.8)

Из (16.7) и (16.8) получаем (16.6).

Формула (16.6) позволяет исследовать поведение оригиналов при , имея в своем распоряжении только их изображения.

Упражнение. Вычислить несобственный интеграл , где .

§ 17. Формула разложения Хевисайда

Пусть изображение функции представляет собой дробно-рациональную функцию.

Теорема. Пусть , где и – дифференцируемые функции. Введем как полюсы функции , т.е. корни (нули) ее знаменателя. Тогда, если , получим формулу Хевисайда:

. (17.1)

Доказательство проведем для случая, когда и – многочлены степеней т и п соответственно, при этом т п. Тогда – правильная рациональная дробь. Представим в виде суммы простейших дробей:

. (17.2)

Отсюда Коэффициенты найдем из тождества (17.2), переписав его в виде

,

где

.

Умножим обе части последнего равенства на и перейдем к пределу при . Учитывая, что и , получим

,

откуда и следует (17.1). Теорема доказана.

Замечание 1. Если коэффициенты многочленов и вещественны, то комплексные корни многочлена попарно сопряжены. Следовательно, в формуле (17.1) комплексно сопряженными величинами будут слагаемые, соответствующие комплексно сопряженным корням многочлена , и формула Хевисайда примет вид

, (17.3)

где первая сумма распространена на все вещественные корни многочлена , вторая – на все его комплексные корни с положительными мнимыми частями.

Замечание 2. Каждый член формулы (17.1) представляет собой записанное в комплексной форме колебание , где . Таким образом, вещественным корням ( ) соответствуют апериодические колебания, комплексным корням с отрицательными вещественными частями – затухающие колебания, чисто мнимым корням – незатухающие гармонические колебания.

Если знаменатель не имеет корней с положительными вещественными частями , то при достаточно больших значениях получим установившийся режим:

, (17.4)

где

;

– чисто мнимые корни многочлена с положительными мнимыми частями.

Колебания, соответствующие корням с отрицательными вещественными частями, экспоненциально затухают при и поэтому не входят в установившийся режим.

Пример 1. Найти оригинал изображения

.

Решение. Имеем . Выпишем корни многочлена : .

По формуле (17.1)

.

Здесь , , так как числа – корни уравнения . Следовательно,

.

Пример 2. Найти оригинал изображения

,

где а 0; .

Решение. Здесь функция , помимо очевидного корня , имеет бесконечно много корней, являющихся нулями функции . Решая уравнение , получим , откуда

.

Таким образом, корни знаменателя имеют вид и , где

Далее запишем

;

;

По формуле (17.3) находим оригинал

§ 18. Операторный метод решения дифференциальных уравнений

Дифференциальные уравнения. Рассмотрим задачу Коши для линейного дифференциального уравнения

(18.1)

(здесь ) с начальными условиями

. (18.2)

Переходя в (18.1) к изображениям, в силу линейности преобразования Лапласа будем иметь

. (18.3)

Изображения производных, используя теорему 3 § 16 и начальные условия (18.2), запишем в виде

. (18.4)

Подставив (18.4) в (18.3), после несложных преобразований получим операторное уравнение

, (18.5)

где (характеристический многочлен); .

Из уравнения (18.5) найдем операторное решение

. (18.6)

Решением задачи Коши (18.1), (18.2) является оригинал операторного решения (18.6):

Для задачи Коши в принятых обозначениях можно записать

;

;

.

Операторное уравнение имеет вид

.

разложим операторное решение на простейшие дроби:

.

С помощью формул, полученных в § 15, получим оригиналы:

.

Таким образом, решение задачи Коши будет иметь вид

.

Пример 1. Решить задачу Коши для дифференциального уравнения с начальными условиями , где .

Решение. Запишем операторное уравнение

.

Его решение имеет вид

.

Используя теорему 2 § 16, последовательно найдем:

.

Пример 2. Решить задачу Коши для дифференциального уравнения с нулевыми начальными условиями, где – ступенчатая импульсная функция.

Решение. Запишем операторное уравнение

и его решение

.

Из теоремы 2 § 16 следует

;

в соответствии с теоремой запаздывания (§ 15)

.

Окончательно,

.

Пример 3. На точку массой т, прикрепленную к пружине жесткостью с и находящуюся на гладкой горизонтальной плоскости, действует периодически меняющаяся сила . В момент времени точка подверглась удару, несущему импульс . Пренебрегая сопротивлением, найти закон движения точки, если в начальный момент времени она покоилась в начале координат.

Решение. Уравнение движения запишем в виде

,

где – упругая сила; – функция Дирака. Решим операторное уравнение

,

где . При

.

Если (случай резонанса), то

.

По теореме запаздывания

.

Окончательно,

Интеграл (формула) Дюамеля. Рассмотрим задачу Коши для уравнения (18.1) при начальных условиях . Операторное решение в этом случае имеет вид

.

Пусть весовая функция – оригинал для . тогда по теореме 1 § 16 получим

. (18.7)

Соотношение (18.7) называется интегралом (формулой) Дюамеля.

Замечание. При ненулевых начальных условиях формула Дюамеля непосредственно неприменима. В этом случае необходимо предварительно преобразовать исходную задачу к задаче с однородными (нулевыми) начальными условиями. Для этого введем новую функцию , полагая

(18.8)

где – начальные значения искомого решения .

Как легко видеть, , и следовательно, .

Характеристики

Тип файла
Документ
Размер
23,81 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее