48968 (597417), страница 8

Файл №597417 48968 (Система математических расчетов MATLAB) 8 страница48968 (597417) страница 82016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

q =

4 5 6

r =

0 0 0 0 0

где r – остаток после деления (в данном случае нулевой вектор). В общем случае для поли-номов q, r , c, a в функции deconv справедливо соотношение

c = conv(q, a) + r

Вычисление производных от полиномов

Функция polyder вычисляет производную любого полинома. Для получения производной от нашего полинома p = [1 0 -2 -5], введем

q = polyder(p)

q =

3 0 - 2

Функция polyder вычисляет также производные от произведения или частного двух полино-мов. Например, создадим два полинома a и b:

a = [1 3 5]; b = [2 4 6];

Вычислим производную произведения a*b вводом функции polyder с двумя входными аргу-ментами a и b и одним выходным:

c = polyder(a, b)

c =

8 30 56 38

Вычислим производную от частного a/b путем ввода функции polyder с двумя выходными аргументами:

[q, d] = polyder(a, b)

q =

-2 -8 -2

d =

4 16 40 48 36

где отношение двух полиномов q/d является результатом операции дифференцирования.

Аппроксимация кривых полиномами

Функция polyfit находит коэффициенты полинома заданной степени n , который аппрокси-мирует данные (или функцию y(x)) в смысле метода наименьших квадратов:

p = polyfit(x, y, n)

где x и y есть векторы, содержащие данные x и y, которые нужно аппроксимировать полино-мом. Например, рассмотрим совокупность данных x-y, полученную экспериментальным пу-тем

x = [1 2 3 4 5]; y = [5.5 43.1 128 290.7 498.4].

Аппроксимация функциональной зависимости y(x) в виде полинома третьего порядка

p = polyfit(x,y,3)

дает коэффициенты полинома

p =

-0.1917 31.5821 -60.3262 35.3400

Рассчитаем теперь значения полинома, полученного при помощи функции polyfit, на более мелкой шкале (с шагом 0.1) и построим для сравнения графики (это делает функция plot) реальных данных и аппроксимирующей кривой.

x2 = 1 : 0.1 : 5;

y2 = polyval(p, x2);

plot(x, y, 'o', x2, y2); grid on

где функция grid on служит для нанесения координатной сетки, а экспериментальные дан-ные на графике отмечены маркерами о.

.

Как видно из рисунка, полином третьего порядка достаточно хорошо аппроксимирует наши данные.

Разложение на простые дроби

Функция residue вычисляет вычеты, полюса и многочлен целой части отношения двух поли-номов. Это особенно полезно при представлении систем управления в виде передаточных функций. Для полиномов a(s) и b(s), при отсутствии кратных корней имеем

где r есть вектор-столбец вычетов, p есть вектор-столбец полюсов, а k есть вектор-строка це-лой части дробно-рациональной функции. Рассмотрим передаточную функцию

Для полиномов числителя и знаменателя этой функции имеем:

b = [-4 8]; a = [1 6 8].

Введя

[r, p, k] = residue(b, a)

получим

r =

-12

8

p =

-4

-2

k =

[ ]

Функция residue с тремя входными (r, p, и k) и двумя выходными (b2, a2) аргументами вы-полняет обратную функцию свертки имеющегося разложения на простые дроби, в дробно-рациональную функцию отношения двух полиномов.

[b2, a2] = residue(r, p, k)

b2 =

-4 8

a2 =

1 6 8

т.е. из данных предыдущего примера мы восстановили исходную передаточную функцию.

В случае кратных корней процедура несколько усложняется, но остается разрешимой.

Интерполяция

Интерполяция является процессом вычисления (оценки) промежуточных значений функций, которые находятся между известными или заданными точками. Она имеет важное приме-нение в таких областях как теория сигналов, обработка изображений и других. MATLAB обеспечивает ряд интерполяционных методик, которые позволяют находить компромисс ме-жду точностью представления интерполируемых данных и скоростью вычислений и исполь-зуемой памятью.

Обзор функций интерполяции

Функции

Описание

griddata

Двумерная интерполяция на неравномерной сетке.

griddata3

Трехмерная интерполяция на неравномерной сетке.

griddatan

Многомерная интерполяция (n >= 3).

interp1

Одномерная табличная интерполяция.

interp2

Двухмерная табличная интерполяция.

interp3

Трехмерная табличная интерполяция.

interpft

Одномерная интерполяция с использованием быстрого преобразования Фурье.

interpn

Многомерная табличная интерполяция.

pchip

Кубическая интерполяция при помощи полинома Эрмита.

spline

Интерполяция кубическим сплайном.

Одномерная интерполяция

Двумя основными типами одномерной интерполяции в MATLAB-е являются полиномиаль-ная интерполяция и интерполяция на основе быстрого преобразования Фурье.

1. Полиномиальная интерполяция

Функция interp1 осуществляет одномерную интерполяцию – важную операцию в области анализа данных и аппроксимации кривых. Эта функция использует полиномиальные методы, аппроксимируя имеющийся массив данных полиномиальными функциями и вычисляя соот-ветствующие функции на заданных (желаемых) точках. В наиболее общей форме эта функ-ция имеет вид

yi = interp1(x, y, xi, method)

где y есть вектор, содержащий значения функции; x – вектор такой же длины, содержащий те точки (значения аргумента), в которых заданы значения y; вектор xi содержит те точки, в ко-торых мы хотим найти значения вектора y путем интерполяции; method – дополнительная строка, задающая метод интерполяции. Имеются следующие возможности для выбора мето-да:

Ступенчатая интерполяция (method = 'nearest'). Этот метод приравнивает значение функ-ции в интерполируемой точке к ее значению в ближайшей существующей точке имеющихся данных.

Линейная интерполяция (method = 'linear'). Этот метод аппроксимирует функцию между любыми двумя существующими соседними значениями как линейную функцию, и возвр-ащает соответствующее значение для точки в xi (метод используется по умолчанию).

Интерполяция кубическими сплайнами (method = 'spline'). Этот метод аппроксимирует ин-терполируемую функцию между любыми двумя соседними значениями при помощи куби-ческих функций, и использует сплайны для осуществления интерполяции.

Кубическая интерполяция (method = 'pchip' или 'cubic'). Эти методы идентичны. Они ис-пользуют кусочную кубическую Эрмитову аппроксимацию и сохраняют монотонность и форму данных.

Если какой-либо из элементов вектора xi находится вне интервала, заданного вектором x, то выбранный метод интерполяции используется также и для экстраполяции. Как альтернатива,

функция yi = interp1(x, y, xi, method, extrapval) заменяет экстраполированные значения теми, которые заданы вектором extrapval. Для последнего часто используется нечисловое значение NaN.

Все методы работают на неравномерной сетке значений вектора x .

Рассмотрение скорости, требуемой памяти и гладкости методов. При выборе метода ин-терполяции всегда нужно помнить, что некоторые из них требуют большего объема памяти или выполняются быстрее, чем другие. Однако, вам может потребоваться использование лю-бого из этих методов, чтобы достичь нужной степени точности интерполяции (гладкости результатов). При этом нужно исходить из следующих критериев.

• Метод ступенчатой аппроксимации является самым быстрым, однако он дает наихудшие результаты с точки зрения гладкости.

• Линейная интерполяция использует больше памяти чем ступенчатая и требует несколько большего времени исполнения. В отличие от ступенчатой аппроксимации, результирующая функция является непрерывной, но ее наклон меняется в значениях исходной сетки (исход-ных данных).

• Кубическая интерполяция сплайнами требует наибольшего времени исполнения, хотя тре-бует меньших объемов памяти чем кубическая интерполяция. Она дает самый гладкий ре-зультат из всех других методов, однако вы можете получить неожиданные результаты, если входные данные распределены неравномерно и некоторые точки слишком близки.

• Кубическая интерполяция требует большей памяти и времени исполнения чем ступенчатая или линейная. Однако в данном случае как интерполируемые данные, так и их производные являются непрерывными.

Относительные качественные характеристики всех перечисленных методов сохраняются и в случае двух- или многомерной интерполяции.

2. Интерполяция на основе быстрого преобразования Фурье _

Функция interpft осуществляет одномерную интерполяцию с использованием быстрого пре-образование Фурье (FFT). Этот метод вычисляет преобразование Фурье от вектора, который содержит значения периодической функции. Затем вычисляется обратное преобразование Фурье с использованием большего числа точек. Функция записывается в форме

y = interpft(x, n)

где x есть вектор, содержащий дискретные значения периодической функции, заданной на равномерной сетке, а n - число равномерно распределенных точек, в которых нужно оценить значения интерполируемой функции.

Двумерная интерполяция

Функция interp2 осуществляет двумерную интерполяцию - важную операцию при обработке изображений и графического представления данных. В наиболее общей форме эта команда имеет вид

ZI = interp2(X, Y, Z, XI, YI, method)

где Z есть прямоугольный массив, содержащий значения двумерной функции; X и Y являют-ся массивами одинаковых размеров, содержащие точки в которых заданы значения двумер-ной функции; XI и YI есть матрицы, содержащие точки интерполяции (то есть промежуточ-ные точки, в которых нужно вычислить значения функции); method – строка, определяющая метод интерполяции. В случае двумерной интерполяции возможны три различных метода:

Ступенчатая интерполяция (method = 'nearest'). Этот метод дает кусочно-постоянную поверхность на области значений. Значение функции в интерполируемой точке равно значе-нию функции в ближайшей заданной точке.

Билинейная интерполяция (method = 'linear'). Метод обеспечивает аппроксимацию данных при помощи билинейной поверхности (плоскости) на множестве заданных значений двумер-ной функции. Значение в точке интерполяции является комбинацией значений четырех бли-жайших точек. Данный метод можно считать «кусочно-билинейным»; он быстрее и требует меньше памяти, чем бикубическая интерполяция.

Бикубическая интерполяция (method = 'cubic'). Данный метод аппроксимирует поверх-ность при помощи бикубических поверхностей. Значение в точке интерполяции является комбинацией значений в шестнадцати ближайших точках. Метод обеспечивает значительно более гладкую поверхность по сравнению с билинейной интерполяцией. Это может быть ключевым преимуществом в приложениях типа обработки изображений. Особенно эффек-тивным данный метод является в ситуациях, когда требуется непрерывность как интерполи-руемых данных, так и их производных.

Все эти методы требуют, чтобы X и Y были монотонными, то есть или всегда возрастающи-ми или всегда убывающими от точки к точке. Эти матрицы следует сформировать с исполь-зованием функции meshgrid, или же, в противном случае, нужно убедиться, что «схема» то-чек имитирует сетку, полученную функцией meshgrid. Перед интерполяцией, каждый из указанных методов автоматически отображает входные данные в равномерно распреде-ленную сетку. Если X и Y уже распределены равномерно, вы можете ускорить вычисления добавляя звездочку к строке метода, например, '*cubic'.

Сравнение методов интерполяции

Приведенный ниже пример сравнивает методы двумерной интерполяции в случае матрицы данных размера 7х7.

  1. Сформируем функцию peaks на «грубой» сетке (с единичным шагом).

[x, y] = meshgrid(-3 : 1 : 3);

z = peaks(x,y);

Характеристики

Тип файла
Документ
Размер
9,13 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6547
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее