168753 (595691), страница 3

Файл №595691 168753 (Дослідження процесів масопереносу при фільтрації підземних вод) 3 страница168753 (595691) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

(1.80)

де коефіцієнти обчислюються по формулі

(1.81)

а власні значення λn визначаються з рівняння

λn = (1.82)

Замість власних значень λn можна шукати значення v = λ + µ2 з рівняння

(1.83)

Таким чином, отримані аналітичні рішення всіх основних крайових завдань конвективної дифузії, забруднюючих воду, речовин за умови осереднення швидкості фільтрації по просторових координатах.

1.1.3. Моделювання масопереносу у випадку D=D( ) при наявності масообміну

Вихідні рівняння. Процес масопереносу розчинних речовин (солей, гіпсів й ін.) при фільтрації підземних вод можна описати наступною системою диференціальних рівнянь у частинних похідних:

(1.84)

(1.85)

(1.86)

де - вектор швидкості фільтрації; - потенціал швидкості фільтрації; χ - коефіцієнт фільтрації; - дифузійний потік або вектор масової швидкості розчиненої речовини (вектор кількості речовини, що переноситься через одиницю площадки за одиницю часу); і - концентрації речовини відповідно в рідкій і твердій фазах; - коефіцієнт конвективної дифузії (Dm - коефіцієнт молекулярної дифузії), σ - активна (або ефективна) пористість середовища; - оператор Гамільтона, α - постійна швидкості масообміну; β - коефіцієнт розподілу речовини між фазами в умовах рівноваги при лінійній ізотермі Генрі

(1.87)

де Γ - коефіцієнт Генрі.

У багатьох практичних задачах як рівняння кінетики масообміну береться одне з наступних рівнянь.

1) при кристалізації або розчиненні компонентів породи у фільтрівній воді

(1.88)

де - коефіцієнт насичення:

2) при нерівномірній необоротній сорбції або десорбції відповідно

(1.89)

3) при рівноважній сорбції або десорбції відповідно

(1.90)

(1.91)

де (або ) - так звана ефективна пористість або масооб’єм поглинання (виділення) речовини породою.

Надалі як рівняння кінетики беремо рівняння (1.88), що є в математичному відношенні найбільш загальним з наведених вище. Тому у випадку плоско-вертикальної сталої фільтрації система рівнянь масопереносу запишеться у вигляді

(1.92)

(1.93)

Припустимо, що вирішено фільтраційне завдання й визначений комплексний потенціал фільтрації як деяка аналітична функція . Тоді область комплексного потенціалу буде конформно відображатися на область фільтрації z функцією

(1.94)

названою зазвичай характеристичною функцією течії ( - функція потоку). Доцільно перетворити рівняння конвективної дифузії (1.93) за допомогою заміни (1.94) до нових незалежних змінних й . При такому конформному перетворенні варто враховувати прийняте припущення про залежність коефіцієнта конвективної дифузії Dy від швидкості фільтрації v. Крім того, варто взяти до уваги, що величина коефіцієнта конвективної дифузії Dy залежить не тільки від величини швидкості фільтрації, але й від її напрямку як тензор, і при рішенні крайових завдань конвективної дифузії, як правило, швидкість фільтрації осереднюється або по всій області комплексного потенціалу, або по одній з координат точок цієї області.

У зв'язку із цим доцільно робити осереднення коефіцієнта конвективної дифузії в новій системі координат окремо уздовж еквіпотенциальних ліній й уздовж лінії струму. Тим самим уводиться поняття коефіцієнта поперечної конвективної дифузії D і коефіцієнта поздовжньої конвективної дифузії D . Таким чином, у результаті перетворення рівняння (1.93) до нових змінних одержимо

(1.95)

Якщо ввести безрозмірні величини

то рівняння (1.95) запишеться у вигляді

(1.96)

де H - діючий напір.

Одержання рішення при осереднені швидкості фільтрації.

При вивченні процесів міграції промислових або побутових стічних вод, що скидають у водойму, а також при розрахунку виносу ядохімікатів або добрив із сільськогосподарських угідь, розглянутих у вигляді смуги певної ширини, виникає необхідність визначення якісного складу підземних вод, ступеня їхнього забруднення або мінералізації. Рішення всіх цих важливих питань зводиться до розгляду відповідних крайових завдань фільтрації й конвективної дифузії, фільтраційні задачі для яких розглянуті вище.

Будемо вирішувати крайову задачу конвективної дифузії при осереднені швидкості фільтрації по всій області комплексного потенціалу , потім розглянемо випадок осереднення швидкості фільтрації по одній з координат області комплексного потенціалу або . Опускаючи риски над безрозмірними величинами в рівнянні (1.96), в області шукаємо рішення рівняння

(1.97)

де

при наступних граничних і початкових умовах:

(1.98)

(1.99)

причому через c1 позначена концентрація речовини у водоймі АВ, а через c0 - концентрація речовини в підземних водах у початковий момент часу t0 = 0 . Рішення крайової задачі (1.97)-(1.99) будемо шукати у вигляді

(1. 100)

де функція знаходиться як рішення стаціонарної задачі

(1. 101)

(1. 102)

а функція знаходиться в результаті рішення нестаціонарної крайової задачі

(1. 103)

(1. 104)

(1. 105)

Функція, що задовольняє рівнянню (1.101) і граничним умовам (1.102), не залежить від змінної ψ, а крайова задача (1.101),(1.102) еквівалентна наступній:

(1. 106)

Вирішивши крайову задачу, знайдемо

(1. 107)

де

Розглянемо тепер задачу

(1. 108)

Загальна схема методу Фур'є. Рішення крайової задачі шукаємо у вигляді . Підставивши це рішення в (1.108), одержимо:

(1. 109)

Із цієї рівності, з огляду на граничні умови, приходимо до задачі на власні значення

(1. 110)

Загальне рішення цього рівняння має вигляд

(1. 111)

Використовуючи граничні умови, одержимо рівняння для визначення всіх власних значень задачі.

з якого після перетворення й введення величини одержуємо рівняння для визначення всіх власних значень

(1. 112)

Шукані власні функції запишуться у вигляді

(1. 113)

Тоді

. (1.114)

З рівності (1.109) для кожного λm одержуємо рівняння

(1. 115)

рішення якого має вигляд

(1. 116)

З огляду на (1.113) і (1.116), записуємо часткові рішення вихідного крайової задачі у вигляді

(1. 117)

а шукане рішення крайової задачі (1.105), (1.106) у силу узагальненого принципу суперпозиції запишеться у вигляді

(1. 118)

Використовуючи початкові умови, знаходимо коефіцієнти у вигляді

(1. 119)

де r1, r2 визначаються рівностями (1.104), а µ1 = 1/(2D1) .

Таким чином, рішення вихідної крайової задачі (1.97)-(1.99) у випадку осереднення швидкості фільтрації по всій області комплексного потенціалу ω не залежить від ψ і має такий вигляд:

(1. 120)

Якщо у виразах (1.119),(1.120) покласти γ* = 0, c* = 0, r1 = 0 , r2 = =1/D1= 1 = 2µ, то одержимо рішення задачі про забруднення підземних вод без обліку масообміну, розглянуте раніше, а саме:

(1. 121)

де

(1. 122)

Моделювання процесу очищення (промивання) засолених земель

Нехай промивання засолених земель відбувається в результаті поливу прісною водою поверхні ґрунту й відводу вод за допомогою одиночної дрени або за допомогою системи дрен. У цьому випадку для кожної з фільтраційних схем, що зустрічаються, область комплексного потенціалу зображується у вигляді прямокутника.. Тому питання вивчення процесу промивання підземного середовища зводиться до рішення в прямокутнику ABCD наступної крайової задачі.

(1.123)

(1. 124)

Бачимо, що ця крайова задача збігається із крайовою задачею (1.97)-(1.99), якщо покласти c1 = 0 , c0 = cн, а отже, рішення задачі (1.123) -(1.124) виходить із рішення (1.122), якщо c1 = 0 , c0 = cн.

Конвективная дифузія у випадку планової фільтрації

Розглянемо такі схеми руху підземних вод, коли виконуються відомі передумови гідравлічної теорії фільтрації. Тоді у випадку сталої або квазіустановленої планової фільтрації рівняння руху підземних вод запишуться у вигляді

(1. 125)

а у випадку планової безнапірної фільтрації - у вигляді

(1. 126)

де T - потужність напірного водоносно шару, q - вектор питомої фільтраційної витрати (м2/сут), a h - напір, що у випадку, коли вісь апплікат спрямована вертикально вниз, визначається рівністю

(1. 127)

Припускаючи, що для кожного із плинів відома область комплексного потенціалу ω і функція, що відображає (1.94)

(1. 128)

перетворимо тривимірне рівняння конвективної дифузії, що у розглянутих випадках має вигляд

(1. 129)

до нових змінних за допомогою підстановки

(1. 130)

Тоді у випадку планової напірної фільтрації рівняння конвективної дифузії перетвориться до виду

(1. 131)

а у випадку планової безнапірної фільтрації до такому виду

(1. 132)

При осереднені величини по області комплексного потенціалу ω питання про дослідження міграції водорозчинних речовин зводиться до відшукання в прямокутному паралелепіпеді ωЧT (або ω Ч hcp) рішення наступної крайової задачі.

Характеристики

Тип файла
Документ
Размер
2,41 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее