148180 (594469), страница 4
Текст из файла (страница 4)
Керамический емкостной датчик давления Kavlico) скомбинирован с NTC датчиком температуры и специально разработан для альтернативно питаемых двигателей (CNG/LPG).
Датчики тока и температуры батарей для гибридных автомобилей
Значительными потребителями электрической энергии являются электрические и гибридные автомобили, которые включают интегрированные стартеры/генераторы, электронно-нагреваемые каталитические конвертеры, электромагнитные клапаны, электронное торможение, электронное рулевое управление, HVAC-системы.
Для удовлетворения растущей потребности в электроэнергии в автомобиле становится актуальным переход от батарей 14 В к батареям 42 В (для средних гибридов может потребоваться и более — до 60 В, а для полных — порядка 450 В). Увеличение спроса на электроэнергию вызвано не только увеличением числа гибридных автомобилей, но также и тем, что многие менее эффективные механические и гидравлические системы Powertrain, Carbody & Chassis замещаются или дополняются электрическими и электронными системами (например, электрического рулевого управления EPS/EPAS). Электрическое питание требуется для систем телематики, АБС, контроля динамики — ESP, ABS, электронного торможения (EPB), электронно-управляемых скользящих дверей, натяжителей ремней безопасности, приводов автоматизированных ручных передач, а также развлечений — систем и приборов Entertainment.
Увеличение потребления электроэнергии в транспортном средстве обосновывает применение автомобильных датчиков тока — для проверки доступной энергии и реализации функциональности управления батарейной энергией, а также температуры батарей — для оптимального заряда и регулирования перегрева (рис. 11). В связи с актуальностью электрических двигателей в гибридах датчики тока и температуры мигрируют из группы электрооборудования автомобиля, относившейся согласно ранним классификациям к системам корпуса и ходовой части, в группу датчиков Powertrain.
Так, SiemensVDO разработала инновационное семейство бесконтактных датчиков тока (рис. 11в), использующих эффект Холла или ГМР, специально для контроля систем стартер/генератор и гибридных транспортных средств.
MLH - новая серия датчиков давления Honeywell
Компания Honeywell выпустила уникальную по своим технико-экономическим показателям серию датчиков давления MLH Чем же примечательно это новое семейство?
Во-первых, благодаря использованию передовой тонкопленочной технологии ATF (Advanced Thick Film) при производстве чувствительного элемента (рис.12) и упрощенному процессу сборки стоимость этой серии была снижена в 2 раза по сравнению с пьезо-резистивной серией ML и на 15–20% по сравнению с аналогичной продукцией других производителей. Суть технологии ATF заключается в непосредственном монтаже керамической подложки с тензорезистивным мостом на обратную сторону металлической диафрагмы датчика, к которой прикладывается давление. Вместе с этим инженерам Honeywell удалось увеличить диапазон измерения до 560 атм, расширить диапазоны рабочих температур и термокомпенсации до границ –40…+125 °С и при этом повысить точность измерения до ±0,25% при температуре +25 °С и ±1,0% во всем диапазоне рабочих температур. (Для справки: рыночная стоимость датчика давления такого класса при мелкооптовых партиях колеблется в пределах $70–90. А датчики серии MLH при тех же количествах будут стоить около $45.)
Рис. 12. Чувствительный элемент датчиков давления MLH, выполненный по технологии ATF
Вторым важным преимуществом серии MLH является очень широкий выбор диапазонов измерения (от 3,5 до 560 атм) с удобным шагом, причем разработчик сам может выбрать диапазон в удобной для него единице измерения — PSI (фунт силы на квадратный дюйм), бар, МПа, кг/см2, а также вид измеряемого давления (избыточное или абсолютное). Избыточное давление измеряется по отношению к атмосферному давлению, абсолютное — по отношению к вакуумной полости, сформированной с обратной стороны мембраны датчика.
-
Датчики систем управления двигателем и основными узлами и агрегатами, обеспечивающими передвижение автомобиля Powerdrivetrain:
-
датчики топливной системы двигателя, зажигания и трансмиссии;
-
датчики бортовой диагностики ONBOARD DIAGNOSTICS (OBD) в системах POWER TRAIN.
-
Рис. 13. Датчики систем POWER DRIVE TRAIN управления двигателем и основными узлами и агрегатами: а — индуктивный датчик скорости двигателя или активный датчик скорости Bosch для регистрации скорости и угла вращения коленчатого вала (внешний вид идентичен); б — датчик положения распределительного вала SiemensVDO на эффекте Холла ; в — программируемый датчик углового положения дроссельной заслонки AN1011 Cherry; г — датчик положения педали акселератора Alps Automotive; д — датчики массового расхода воздуха Hitachi; е — датчик давления воздуха во впускном патрубке Manifold Air Pressure (MAP) sensor Kavlico; ж — датчик трансмиссии Bosch на основе эффекта Холла; з — датчики входной и выходной скорости коробки передач SiemensVDO; и — датчик температуры воздуха, охладителя и масла Bosch; к — датчик температуры воздуха во впускном патрубке, а также масла, воды и головок цилиндров SiemensVDO; л — датчик детонации SiemensVDO; м — датчик уровня топлива SiemensVDO; н — датчик уровня и температуры масла Hella; о — датчик состояния масла Hella; п — датчик давления в цилиндрах Incylinder Pressure Sensor Honeywell.
В эту группу входят датчики положения — например, распределительного и коленчатого валов, дроссельной заслонки, педали акселератора, датчик массового расхода воздуха, датчик давления воздуха во впускном патрубке, датчик скорости автомобиля, датчики температуры (в частности, температуры охладителя), датчик детонации, датчики уровня топлива и масла. Кроме того, в указанную группу входят и новые типы, например многопараметрические и мультисенсорные датчики контроля процесса горения в цилиндрах (давления и температуры) или состояния масла двигателя (рис. 13).
-
Датчики систем контроля эмиссии, к которым относятся: датчик концентрации кислорода, датчик положения клапана системы рециркуляции отработавших газов, датчик эмиссии летучих паров, датчик газа, датчик температуры отработавших газов и некоторые другие. Среди новых применений датчик концентрации мочевины, которая помогает в очистке выхлопов дизеля рис. 14
-
Датчики систем контроля корпуса и колес:
-
полуактивная или активная подвеска;
-
электронно контролируемая подвеска ECS (ELECTRONICALLY CONTROLLED SUSPENSION);
-
АБС, TPMS (TIRE PRESSURE MONITORING SYSTEM) — система контроля давления шин;
-
электронные системы контроля доступа в кабину;
-
контроль положения окон, дверей, сидений, солнечной крыши, стеклоочистителей, зеркал.
-
Рис.14. Датчики систем контроля эмиссии, включая Powerdrivetrain: а — лямбда=зонд для измерения концентрации кислорода Bosch LSM11; б — датчик концентрации кислорода Denso; в — датчик положения клапана системы рециркуляции отработавших газов SiemensVDO; г — датчик Kavlico для контроля уровня топлива в текущих и будущих применениях (с целью минимизации эмиссии летучих паров) независимо от содержания этанола, метанола и топливных аддитивов; д — датчики газа NOx и соотношения воздух/топливо SiemensVDO; е — датчик температуры отработавших газов SiemensVDO; ж, з — датчики уровня и концентрации мочевины Kavlico (ж) и SiemensVDO (з), и — дифференциальный датчик давления Kavlico для регулирования расхода (скорости процессов) EGR — для снижения образования NOx; к — датчик давления паров топлива в бензиновом баке Kavlico (для определения утечки согласно OBDII).
К этой группе относятся датчик положения подвески, датчик давления воздуха в амортизаторах, активные и пассивные дверные ключи, датчик тока батареи, датчик доступа к двери без ключа, датчик скорости колеса, датчик силы торможения, датчики положения и некоторые другие (рис. 14).
-
Датчики концентрации кислорода OXYGEN SENSORS (или датчики газа Gas Sensors — oxygen и NOx sensors).
Сегодня актуальны следующие технологии датчиков oxygen sensors и NOx sensors:
-
электрически нагреваемые датчики на основе диоксида циркония ZrO2 (датчики с диоксидом циркония ZrO2, нагреваемые выхлопным газом, в настоящее время не актуальны);
-
электрически нагреваемые планарные датчики с малой термической массой на основе керамики ZrO2;
-
электрически нагреваемые датчики на основе диоксида титана TiO2;
-
электрически нагреваемые, планарные датчики с малой термической массой, двухкамерные датчики на основе ZrO2;
-
двухкамерные датчики на основе ZrO2.
Эти датчики определяют состав выхлопных газов, гарантируя, что он остается в пределах норм, и подают сигналы обратной связи к системам контроля двигателя — для регулирования соотношения ТВС с целью оптимизации сгорания топлива и минимизации эмиссии.
-
Микромеханические датчики массового расхода воздуха MASS AIRFLOW SENSORS (для регулирования ТВС).
-
Датчики температуры TEMPERATURE SENSORS:
-
термисторы с отрицательным или положительным температурным коэффициентом;
-
резистивные датчики температуры (пленочные платиновые датчики);
-
платиновые термопары;
-
бесконтактные инфракрасные датчики.
-
Указанные датчики посылают информацию автомобильному компьютеру об окружающей температуре в различных частях автомобиля. Кроме измерения температуры в салоне, они измеряют температуру масла, воздуха, охлаждающей жидкости — во впускном патрубке, коробке передач, на коленчатом валу и других частях автомобиля, а также детектируют присутствие или положение пассажира.
-
Датчики давления Pressure Sensors применяют следующие актуальные технологии:
-
пьезорезистивные микромеханические датчики;
-
пьезорезистивные поликремниевые модули на стали;
-
емкостные микромеханические датчики;
-
емкостные керамические модули.
-
Автомобильные датчики положения. Современные технологии и
новые перспективы. Актуальные классические принципы
оптоэлектроники в автоэлектронике
Последнее время в связи с появлением большого числа недорогих и надежных магнитоуправляемых ИС и, главным образом, новых магнитных энкодеров Холла инженеры, занимающиеся вопросами автоэлектроники, стали отрицательно относиться к использованию оптической технологии в таких применениях, как детектирование положения и скорости посредством оптических датчиков. Веским аргументом против оптических компонентов является их чувствительность к загрязнениям и повышенной температуре — условиям, типичным для автомобильной среды, а также более высокая цена, если сравнивать такие компоненты с новыми угловыми энкодерами Холла.
И все-таки за пределами данных ограничений оптические датчики — более высокоточные, чем многие электрические измерители, а кроме того, характеризуются высокой разрешающей способностью и высокой надежностью. Базовые принципы технологии разрабатывались и оттачивались многие годы, и именно оптические принципы составляют основу сегодняшних энкодеров, в том числе и магнитных.
Оптические датчики
Все известные оптические (и многие неоптические) схемы детектирования движения сводятся к двум базовым схемам, показанным на рис. 15,16 Схемы работы устройств проиллюстрированы рис. 15
Рис. 15. Базовая схема оптического детектирования движения — прерыватель а–в — щелевой оптический (фотоэлектрический) датчик — оптопрерыватель (оптрон или оптопара): 1 — корпус датчика; 2 — светодиод; 3 — фоточувствительный элемент (фототранзистор или фотодиод); а — конструкция датчика: 4 — элементы для монтажа корпуса; 5 — терминалы для монтажа на печатной плате; б — линейный прерыватель — датчик линейной скорости (цифровой индикации определенного линейного положения): 4 — линейный ротор (линейно перемещающийся элемент) с чередующимися оптически прозрачными и оптически непрозрачными участками; 5 — терминалы для монтажа на печатной плате; в — датчик угловой скорости (индикации определенного углового положения); 4 — вращающийся ротор — крыльчатка с непрозрачными лопастями; 5 — вращающийся вал; г — аналог оптопрерывателя — щелевой датчик скорости Холла: 1 — корпус датчика; 2 — магнит; 3 — датчик Холла (униполярный ключ); 4 — магнитопровод; 5 — терминалы для монтажа на печатной плате; 6 — вращающийся ротор — крыльчатка с лопастями из ферромагнитного материала; 7 — вращающийся вал.
Рис. 15а–в демонстрируют принцип работы типичного щелевого оптического переключателя-оптопрерывателя, или оптрона. В пластмассовом корпусе расположены светодиод и фотодетектор, например фототранзистор, разделенные воздушным зазором в теле корпуса. Свет от светотодиода попадает на фототранзистор, который переходит в состояние насыщения. Если в зазоре появляется непрозрачный элемент — ротор, путь света между светодиодом и фототранзистором блокируется, что вызывает переключение выхода фототранзистора к высокому уровню.
Излучающие светодиоды могут функционировать как в видимом, так и в инфракрасном спектре. Для работы датчика необходимо, чтобы конструкция корпуса и ширина элементов ротора обеспечивали чередование светопередачи и перекрытия оптического канала. Существенно уменьшить ширину оптических кодовых элементов и повысить разрешение устройства позволяют лазерные диоды. Расстояние от датчика до детектируемого объекта в пределах ширины рабочего зазора несущественно, но если необходим больший рабочий диапазон, также применяются лазерные светодиоды.