148180 (594469), страница 3
Текст из файла (страница 3)
Термопары, состоящие из двух различных металлов, вследствие эффекта Зеебека генерируют термоЭДС (термоэлектрическое напряжение) при нагреве. Три наиболее популярных типа термопар, классифицируемых в зависимости от используемой комбинации металлов и сплавов, — железо-константан (J), медь-константан (T) и хромель-алюмель (K) (обозначения согласно ГОСТ и ANSI). Термопары K-типа с достаточно высокой линейностью и точностью позволяют измерять температуры –270…+1370 °C, термопары J-типа измеряют температуры порядка –150…+1250 °C, T-типа — –200…+350 °C. Термопары из благородных металлов, например, B-типа на основе платины/сплава 30% платины с родием позволяют измерять более высокие температуры порядка 800–1700 °C и выше. Известны также вольфрам-рениевые термопары ТВР (обозначение ГОСТ), которые могут измерять температуры от 1000 до 2200 (2500) °C.
Выходное напряжение термопар является малым — например, 40 мкВ/°C для датчиков K-типа. Обработку сигналов термопар упрощают специальные сигналообработчики, например, MAX6674/5 Maxim для термопар K-типа.
Кремниевые термисторы с PTC Infineon серий KT и KTY и Philips серий KTY (рис. 5ф) предназначены для измерения температур воздуха, газов и жидкостей в диапазоне –55…150 °C [20, 21]. Термочувствительный элемент — это n-кремниевый кристалл, реализованный по планарной технологии. Корпусирование датчиков выполняется в SMD корпусах типа SOT23 (KTY82-2 Philips).
В датчиках серий KTY использован принцип сопротивления растекания Spreading Resistance — производный от одноточечного метода измерения сопротивления полупроводниковой подложки, которое, согласно этому методу, зависит только от удельного сопротивления материала кристалла и площади контакта и не зависит от толщины и площади подложки. Датчики характеризуются отсутствием p-n-переходов, большим PTC, несколько меньшей линейностью, чем RTD, и производятся по технологии, аналогичной производству ИС, что допускает включение дополнительных активных и пассивных цепей в кристалле датчика.
Одним из таких применений являются термостаты в системах водяного и масляного охлаждения бензиновых или дизельных двигателей. Хотя ИС термопереключателей с двоичным цифровым или аналоговым выходом и (или) порогами удобны для автоматического включения/выключения вентилятора, для работы при более высоких температурах (0–260 °C), чем возможные с технологией ИС, рекомендуются термостаты на другой основе, например, коммерческие версии от Honeywell (рис. 5щ).
В последние годы в автоэлектронике приобретают актуальность бесконтактные способы измерений, которые способны детектировать очень малые изменения в тепловом (инфракрасном) излучении объекта. Многие из IR-датчиков работают по принципу сравнения инфракрасного излучения объекта, поглощаемого термочувствительной мембраной, с температурой детектора, которую измеряет термистор (MEMS-технология). Разница температур преобразуется в электрический потенциал посредством термоэлектрического эффекта в термоэлементе. Напряжение питания для датчика не требуется.
Ввиду того, что IR-датчики способны измерять температуры порядка –20…+100 °C и, непосредственно, — только твердотельных объектов или поверхностей с достаточной эмиттирующей способностью, они находят свои основные применения в автомобильных системах безопасности (определение положения пассажиров, видеосистемы наблюдения в ночных и туманных условиях), климат-контроле, для обнаружения конденсации на окнах при тумане. Примерами являются MLX90247 Melexis, TS105-5 и другие HL-Planartechnik, ZTP-101 и другие Thermometrics. Расширение этих устройств — инфракрасные сенсорные массивы.
В различных узлах автомобиля температура является часто второстепенным параметром, который служит для компенсации измерений основных параметров или предупреждения ситуаций, когда высокая температура может вызывать сбои и неисправности работы автомобильных систем. Следствием этого является миграция датчиков температуры в различные мультисенсорные модули контроля основных параметров (например, актуально объединение датчика массового расхода воздуха и температуры во впускном патрубке или датчика давления и температуры воздуха). Но при этом число датчиков, выполняющих индивидуальные измерения температуры в новых автомобилях, не уменьшается, а, скорее, увеличивается. Новые применения, например, включают контроль температуры жидкости трансмиссии, выхлопов, контроль работы батарей гибридных автомобилей, а также климат-контроль, измерение перегрева шин.
Датчики детонации и другие датчики контроля двигателя и
топливной системы в системах Powertrain
Другие датчики, важные для функционирования систем Powertrain, но объемы потребления которых в процентном отношении по сравнению с другими типами датчиков невелики, — это датчик детонации, датчики уровня жидкостей — топлива и масла, датчики крутящего момента двигателя и коробки передач.
Датчики детонации используются для гашения детонации — нерегулярного горения и сильной вибрации двигателя (экономия топлива достигает 9%). Типичная конструкция датчика детонации включает компрессионный пьезоэлектрический элемент (керамику или кристалл), способный реагировать на акустические вибрационные колебания двигателя, генерируя электрический сигнал, например, если резонансная частота его характеристики совпадает с частотой детонации (датчики резонансного типа). Существуют датчики как резонансного, так и нерезонансного типа (рис. 6). Нерезонансные датчики характеризуются плоской АЧХ в определенном диапазоне порядка 1–15 кГц и более гибко адаптируются к различным типам двигателей, но резонансный датчик обеспечивает при детонации более заметные высокие уровни сигнала. В этой сфере рынка ситуация остается пока без изменений, хотя и для замены пьезоэлемента напрашивается поиск новых решений — компактных и недорогих MEMS. По мере развития альтернативных технологий мониторинга процессов в двигателе датчик детонации может быть и исключен.
Ученые Манчестерского университета разработали новый тип беспроводных датчиков для удаленного мониторинга механических систем и предупреждения сбоев коробок передач, двигателей, дизельных двигателей, подшипников колес, механизмов дверей. MEMS-датчик будет отслеживать вибрацию, температуру и давление, может также измерять концентрацию металлических элементов, увеличивающуюся при износе, что помогает уточнять срок службы.
Рост топливных цен и более строгие нормы регулирования эффективности и эмиссии транспортных средств создают глобальный спрос на прецизионные датчики крутящего момента двигателей и входного/выходного валов коробок передач (рис. 7), которые актуальны как на стадии контроля, так и для работы в режиме реального времени. Важнейшая актуальная технология для этого типа устройств — магнитостриктивная, от MDI и SiemensVDO (рис. 7а–б), с поляризованным магнитоупругим кольцом и бесконтактным датчиком магнитного поля, которое пропорционально крутящему моменту. Альтернативные актуальные методы представляют собой беспроводные и безбатарейные SAW устройства (рис. 7в–г) на поверхностных акустических волнах, которые разработали компании Honeywell и Transense, — резонаторы, резонансная частота которых (номинальная 433 МГц датчиков Honeywell) изменяется под действием механического напряжения. Опрос датчиков осуществляется беспроводным методом — радиочастотными импульсами. Резонансная частота отклика позволяет вычислить крутящий момент.
Оба вида датчиков работают при температурах до 150 °C, характеризуются высокой точностью, прочностью, малым размером и весом датчика, долговременной стабильностью, способностью работать в жестких условиях окружающей среды, технологичностью и низкой ценой.
Датчики уровня масла
Эти устройства используются сегодня для определения уровня и потребления масла и представляют собой не что иное, как электронное замещение механического щупа, выполняющее те же функции, но в реальном времени, указывая на необходимость замены масла двигателя. Например, датчики, измеряющие уровень масла, предлагают компании Hella, GE Thermometrics (термистор с PTC), SiemensVDO (рис. 8).
Текущая линейка Hella, например, включает как относительно простой поплавковый переключатель, так и интеллектуальные термические датчики для непрерывных аналоговых измерений уровня масла (рис. 8а–в).
Любой тип датчиков гарантирует обнаружение отсутствия масла и подачу команды о невозможности запуска двигателя, но конструкции на основе поплавковых переключателей, хотя все еще более предпочтительны, чем масляный щуп, уже несколько устарели, поскольку функциональный принцип поплавковых переключателей предполагает срабатывание датчика только в фиксированных точках переключения.
Тепловые датчики Thermal oil level sensors Hella измеряют уровни в диапазоне примерно 50 мм и могут опционно определять температуру масла (рис. 8в). Согласно термическому принципу уровень масла вычисляется по времени охлаждения сенсорного элемента из линейного соотношения с уровнем при полном заполнении. Датчик с характеристикой аналогового типа по состоянию масла косвенно обеспечивает контроль состояния двигателя, способствуя раннему обнаружению сбоев.
Измерения осуществляются непрерывно в процессе вождения, включая этапы перемещения машины по наклонной поверхности, остановки, боковое и продольное ускорения, допуски, с индикацией минимально необходимого или текущего уровня масла.
Датчики состояния масла
Постоянные изменения в технологиях автомобильных двигателей, основными целями которых являются оптимизация работы двигателя и достижение соответствия новым стандартам эмиссии, сформировали потребность в новых многопараметрических датчиках, располагаемых в двигателе внутреннего сгорания. Многие компании в последние годы активно разрабатывают датчики состояния масла двигателя Oil condition sensors (рис. 9) — надежный и эффективный в стоимостном выражении способ решения ряда проблем экономического и экологического характера. Эти датчики осуществляют комплексный мониторинг состояния масла (и не только его уровня, давления или температуры) в реальном времени, информируя ECU, с целью:
-
максимизировать полезный срок службы масла и фильтра , минимизировать потребление натуральных ресурсов;
-
минимизировать цену эксплуатации масла и простои машины, допустить большие интервалы между заменами масла, уменьшая потребительские расходы;
-
точно указывать срок замены масла;
-
поддерживать необходимый уровень масла;
-
регулировать расположение масляного фильтра;
-
защищать двигатель;
-
уменьшать гарантийные издержки;
Датчик состояния масла помогает защищать двигатель посредством ранней диагностики сбоев, подачи тревоги водителю и невозможности запуска, если падает не только уровень, но и качество масла, что может быть следствием превышения срока службы масла или указанием на проблемы с двигателем. Датчик помогает улучшать характеристики вождения транспортного средства, так как состояние масла может значительно различаться в зависимости от многих условий. С высокой точностью определяется оптимальное время замены масла.
На старение масла влияют различные факторы, такие как:
-
индивидуальное поведение водителя при вождении;
-
частота холодных стартов;
-
качество топлива;
-
загрязнения, например, сажа в дизельных двигателях, образование нитратов и окислений в двигателях с искровым зажиганием, а также вследствие утечки топлива, охладителя, воды;
-
окружающие условия.
Например, компания Bosch разрабатывает многофункциональный датчик состояния и уровня масла SGM110 (рис. 9а), который измеряет температуру, уровень масла (20–100 мм), а также его вязкость (3–300 мм2/с) и диэлектрическую проницаемость (рис. 10б–г).
Камертонный резонатор и обрабатывающая электроника размещены в многокристальной ASIC. Интегральный датчик способен диагностировать начало деградации масла (уменьшения или загрязнения, например, копотью, или вследствие утечки топлива и охладителя).
Датчик качества топлива для FFV
Двигатель и топливная система FFV-автомобиля должны быть адаптированы к запуску на коррозионном спиртовом топливе. Для анализа топлива используется специальный датчик flex fuel sensor (рис. 12), который измеряет содержание сложных эфиров в топливе и контролирует впрыск.
Датчик SiemensVDO (рис. 10а) работает, измеряя диэлектрическую постоянную и удельную электропроводность, и обеспечивает линейный аналоговый выход с температурной компенсацией. Датчик рассчитан на различные применения: распознавание топлива двигателя, Fuel cell автомобили (вода/метанол), определение качества дизельного топлива.
Система управления FFV-двигателями Bosch (рис. 10б) включает λ-датчик концентрации кислорода в выхлопах, по содержанию которого система управления двигателем рассчитывает содержание спирта в топливе и регулирует впрыск и зажигание.
Датчики для газовых двигателей
Чтобы успешно применять топливо CNG, необходимо достаточное число датчиков давления, которые предлагает, например, Kavlico Количество топлива в баке может быть измерено комбинированным датчиком давления и температуры Kavlico на основе тонкопленочной технологии в герметичном корпусе (с целью предотвращения утечки топлива). Датчики меньших давлений подходят для систем прохождения топлива.