123081 (592757), страница 2
Текст из файла (страница 2)
Криволінійні характеристики мають двотактний магнітний підсилювач і частотний детектор (14), електромашинний підсилювач (15), квадратор (16).
Елементи з в'язким тертям (17) і з в'язким тертям і гістерезисом (18) володіють негативним дефектом.
Бінарна (19), синусоїдальна (20), вилоподібна (21) і інші періодичні характеристики властиві фазовим детекторам.
Характеристики I, 2, 6–11, 14, 16, 17, 19–21. є однозначними. Вони дозволяють однозначно визначати величину вихідного сигналу, по відомій величині вхідного сажала.
Характеристики 3, 4, 5, 12, 13, 15, 18 є неоднозначними. Вихідний сигнал елементів з такими характеристиками залежить не тільки від величини вхідного сигналу в даний момент часу, але і від його поведінки в попередні моменти часу:
у(t)=F (x(t)) (1.1)
Крім того, нелінійності бувають симетричними і несиметричними, парними і непарними, гладкими і нерівними.
Дня аналітичного опису статичних нелінійностей часто використовують шматково-лінійну і поліномінальну апроксимації.
Нелінійності, є в будь-якому реальному приводі, можуть істотно впливати на його динамічні властивості, зокрема на стійкість. Цей вплив виявляється в наступному:
Привод, стійкий і має достатній запас стійкості в лінійному наближенні, може виявитися не стійким або не володіючим тим запасом стійкості, який очікується. Такий вплив надають частіше за все «петлеві» нелінійності (люфт, гістерезис), але при деяких положеннях в структурі приводу до цього ж ефекту можуть привести і однозначні нелінійності, наприклад навіть такі, як зона нечутливості [9–10].
В приводі можуть з'явитися принципово нові типи руху, які не можуть існувати в лінійних системах і тому не можуть бути навіть якісно пояснені з позиції лінійної моделі. До таких рухів відносяться в першу чергу автоколивання. Автоколивання можуть викликати ті ж нелінійності, які викликають зменшення запасу стійкості. В одноконтурних системах – це петлеві нелінійності, в неодноконтурних і однозначні.
Допустимі або недопустимі автоколивання в реальній системі – питання дискусійне. Все залежить від їх параметрів, тобто від розмаху і частоти. Одне поза сумнівом автоколивання не повинні порушувати вимоги по точності, отже, якщо їх і можна допустити, то тільки при таких, амплітудах, при яких викликана ними помилка сумісно з вимушеною помилкою, викликаною відтворенням всіх заданих законів управління, не виходить за межі допустимих.
Для достатньо повної думки про динамічні властивості проектованого приводу і його придатності для виконання доручених йому функцій потрібно розглянути і його, нелінійну модель. При цьому розгляді перед інженером виникають дві основні задачі: по-перше, зрозуміти, в чому може виявлятися вплив тієї або іншої нелінійності, зрозуміти фізику дії як окремої нелінійності, так і сукупності декількох нелінійностей і, по-друге, оцінити, кількісний вплив головних нелінійностей на стійкість і динамічну точність досліджуваної системи.
З огляду на те, що на нелінійну систему принцип суперпозиції не розповсюджується, строго кажучи, не можна розглядати вплив кожної нелінійності окремо і потім підсумовувати ефекти їх дії. Тому, здавалося б, потрібно розглядати вплив всіх нелінійностей спільно. Такий підхід пов'язаний із значними обчислювальними труднощами, які, правда, можуть бути подолані при використовуванні сучасних обчислювальних машин. Важливе інше, такий підхід не має сенсу, в усякому разі, на першому етапі проектування нелінійної системи, оскільки не дає корисної інформації про вплив кожної з нелінійностей на динамічні властивості, а отже, не може допомогти у виборі методів цілеспрямованої дії з метою забезпечення необхідних динамічних властивостей.
Частіше всього характер впливу нелінійності не змінюється при її дії в сукупності з іншими, тому має сенс розгляд і окремо взятих нелінійностей, і розумно вибраних комбінацій невеликого числа нелінійностей.
Розуміння впливу нелінійностей на динамічні властивості важливе і для правильного проектування лінійного варіанту – вибору структури, методів корекції і т.п., оскільки системи, еквівалентні по динамічних властивостях в лінійному плані, можуть виявитися зовсім не еквівалентними при обліку нелінійностей і при синтезі лінійної структури раціонально використовувати такі, у яких шкідливий вплив основних нелінійностей на динамічні властивості менше.
Особливістю нелінійного перетворення із зворотним зв'язком є неможливість отримання в явному виді залежності між вхідними і вихідними сигналами.
Тому для отримання статичних характеристик перетвореного сигналу, не можуть бути безпосередньо застосовані.
Дамо короткий опис розроблених в даний час методів дослідження нелінійних перетворень, що не вимагають завдання явної залежності між вхідним і вихідним сигналами.
-
Метод безпосередньої лінеаризації.
Нелінійні функції, що входять в перетворення із зворотнім зв'язком, замінюються лінійними, для чого використовується два перших доданків їх розкладання в ряд Тейлора. В тих випадках. коли ця операція можлива (нелінійності є аналітичними, а сигнали на їх вході – малі), задача втрачає свою специфіку і стає задачею про лінійні перетворення випадкових функцій.
В даній роботі детально не розглядатиметься метод безпосередньої лінеаризації, оскільки передбачається, що якщо, така можлива, то вона вже виконана в процесі переходу від реальної системи до її динамічної схеми.
2. Методи, засновані на вживанні канонічних розкладань випадкових сигналів.
В цих методах використовується можливість представлення випадкового процесу на кінцевому інтервалі часу сумою детермінованих функцій часу з коефіцієнтами, незалежними між собою випадковими величинами, що є. Таке уявлення дозволяє в принципі звести початкову задачу до проблеми інтеграції нелінійних диференціальних рівнянь, що містять тільки детерміновані функції часу.
3. Методи, засновані на представленні вихідних сигналів у вигляді процесів Маркова (одновимірних або багатовимірних) і використовуючі апарат диференціальних рівнянь Колмогорова для обчислення розподілу вірогідності цих сигналів.
Складність цього апарату, взагалі кажучи, обмежує область його вживання задачами аналізу перетворень, що задаються диференціальними рівняннями першого і, в деяких випадках, другого порядку, а також що приводяться до таких шляхом введення допоміжних перетворень, наприклад гармонійної лінеаризації.
Можливість отримання методами теорії Марківських процесів точних рішень, хоча і для обмеженого круга задач, привертає до них увагу широкого круга дослідників.
Метод дослідження перетворень, що містить шматково-лінійні функції, заснований на послідовному зшиванні (припасовуванні) рішень для кожної з областей фазового простору, де перетворення є лінійним. Метод застосовний для аналізу коливальних режимів, обурюваних малими випадковими діями.
Метод послідовних наближень.
Ідея методів витікає з фізичних уявлень про процес встановлення режиму в системі із зворотним зв'язком як ітернаційному процесі поступового багатократного обходу зовнішнього обурення по замкнутому контуру.
При цьому інтегральне рівняння, неявно задаюче перетворення із зворотним зв'язком, може розв'язуватися по схемі
(1.2)
причому X0(t)=Z(t), тобто значення X(t) передбачається тим, що запізнюється, і кожного разу береться з попереднього ітераційного циклу.
Формально, звичайно, можна розглядати цю схему як звичайну математичну схему послідовних наближень, не пов'язуючи її з яким-небудь фізичним змістом.
Очевидно. що вживання цієї схеми зводить задачу про замкнуту систему до задачі про розімкнену.
Наближені методи, засновані на припущенні про те, що характер закону розподілу сигналу на вході нелінійного безінерційного перетворення відомий.
В цьому випадку розшукується лише деяка кількість числових параметрів, залишених невизначеними в рівнянні закону розподілу. Для цих параметрів виходять неявні співвідношення (звичайно трацендентні рівняння), які можуть бути дозволені, наприклад, графічно. Маючи у вигляді, що при фільтрації відбувається наближення закону розподілу до нормального, звичайно приймають саме такий характер закону. Нормальний закон повністю визначається величинами середнього mX і середньоквадратичного σX значення, а також видом кореляційної функції.
В основному методі цієї групи додатково використовується можливість статичної лінеаризації безінерційного нелінійного перетворення, а отже, вводиться припущення про те, що можна у виразі для кореляційної функції сигналу X(t) на вході. Це дозволяє істотно спростити задачу і оперувати тільки параметрами mX і σX.
Використовування ідеї розкладання по малому параметру дозволяє розширити можливості методу і враховувати малі спотворення виду кореляційної функції і відхилення закону розподілу від номінального.
Зважаючи на спільність і порівняльну простоту метод статичної лінеаризації представляє найбільший інтерес для розрахункової практики.
Виклад проблем, пов'язаних з дослідженням нелінійних перетворень із зворотним зв'язком, доцільно розділити на дві частини: першу, присвячену дослідженню стаціонарних режимів, тобто режимів, при яких сигнал, діючий всередині контуру зворотного зв'язку, є стаціонарною функцією часу, і другу, де розглядаються нестаціонарні режими [3].
Від режиму, який реалізується в даній системі (перетворення), визначається не її структурою, а характеристиками вхідних сигналів і значеннями параметрів системи.
При дослідженні конкретних систем звичайно доводиться аналізувати і стаціонарні, і нестаціонарні режими.
Вельми важливими практичним питанням є з'ясування умов переходу від одного режиму до іншого при зміні параметрів сигналу системи.
Ці умови у ряді випадків визначають так звану перешкодостійкість системи, тобто можливість втрати стійкості через наявність випадкових перешкод.
Методи дослідження і розрахунку нелінійних стежачих систем, що розглядаються нижче, базуються на гармонійній лінеаризації динамічних властивостей нелінійних елементів [9].
Досліджуваний елекрогідропривод розглядатимемо за допомогою методу гармонійної лінеаризації динамічних властивостей нелінійних елементів.
Метод гармонійної лінеаризації заснований на заміні нелінійного елемента еквівалентним (по деяких властивостях) лінійним. Умовою еквівалентності служить збіг вихідних коливань лінійної ланки з першою гармонікою вихідних коливань нелінійного, коли на їх вхід подається однаковий гармонійний сигнал x=Asinωt.
Якщо характеристика нелінійного елемента однозначна і симетрична щодо початку координат, то еквівалентний лінійний елемент може описуватися рівнянням y=q(А) x.
де х – вхідна координата; у – вихідна координата; q(А) – коэффициент гармонійної лінеаризації.
У разі неоднозначних (петлевих) нелінейностей перша гармоніка вихідного сигналу зсунута по фазі щодо вхідного сигналу: цією ж здатністю винен володіти й эквівалентний лінійний елемент, тому при лінеаризації використовується лінійний елемент, властивості якого визначаються рівнянням
. (1.3)
Передавальна функція в даному випадку виражається
, (1.4)
частотна характеристика (s=jω):
. (1.5)
Вибір коефіцієнтів і повинен забезпечити рівність між вихідними коливаннями еквівалентного лінійного і першою гармонікою реального нелінійного елемента.
В ще більш загальному випадку коефіцієнти гармонійної лінеаризації можуть залежати і від частоти: , а частотна характеристика нелінійного елемента прийме вигляд:
. (1.6)
По фізичному значенню визначає відношення амплітуди і зсув по фазі для першої гармоніки вихідних коливань нелінійного елемента. Тому її часто називають еквівалентним комплексним коефіцієнтом посилення нелінійного елемента.
Величини і
залежать від властивостей нелінійного елемента, і для всіх типових нелінійностей їх значення є в літературі. Часто вони містять постійні множники, що враховують коефіцієнт посилення, передавальне відношення і т. п., значення яких входять в передавальну функцію лінійної системи, що використовується на першому етапі проектування при розгляді лінійної моделі. Раціонально ввести поняття типової нелінійної ланки, по аналогії з поняттям типових лінійних ланок. (В літературі зустрічаються визначення «приведена нелінійність», «нормована нелінійність» для того ж поняття, яке тут позначається як «нелінійна ланка».)
Коефіцієнти гармонійної лінеаризації типових нелінійних ланок не містять множників, незалежних від амплітуди, і їх властивості залежать тільки від властивостей нелінійності і амплітуди сигналу [1].
2. Аналіз і синтез досліджуваної системи управління сервоприводу з урахуванням впливу нелінійних ділянок
2.1 Аналіз технічного завдання на систему управління