113796 (591426), страница 6

Файл №591426 113796 (Развитие логического мышления учащихся при решении задач на построение) 6 страница113796 (591426) страница 62016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Использование условной терминологии дает возможность ориен­тировать учителя на ту или иную сторону развития математиче­ского мышления у школьников в соответствующих методических рекомендациях. Так, обратимся еще раз, к примеру, упомянутому ранее. Говоря о необходимости развития у учащихся абстрактно­го мышления, можно рекомендовать учителю, приступающему к преподаванию систематического курса геометрии, начать с рас­смотрения реальной ситуации – задачи проведения трубопровода между двумя пунктами. Сам трубопровод представляет собой ре­альный объект, обладающий самыми различными, важными в практическом смысле свойствами: весом отдельных звеньев, ка­чеством металла, размерами, формой, протяженностью, качеством покрытия, пропускной способностью и т. д.

Начиная проектировать строительство трубопровода, инженер-конструктор, прежде всего, будет интересоваться протяженностью и трассой, по которой он будет проложен. На этом уровне конструктор отвлекается от всех других свойств этого объекта, обращая вни­мание лишь на названные выше свойства; возникает абстракт­ная модель трубопровода в виде геометрической линии. Руководствуясь оптимальными условиями эффективной работы трубопровода, инженер начинает изучать вопрос о необхо­димой для этого форме и размерах трубопровода, не интересуясь теперь тем, по какой трассе он будет проложен. Возникает новая абстрактная модель этого же объекта, представленная в виде геометрического тела. Прораб, который руководит обкладкой трубопровода изоляционным материалом (или окраской трубопровода, защищающей его от коррозии), имеет дело уже с другой абстрактной моделью трубопровода: он рассматривает его как геометрическую поверхность. Решение этой и других аналогичных ей задач устанавливает полезность рассмотрения среди многообразных свойств объекта таких свойств, как размеры, форма и положение в пространстве. Возникает целая отрасль научного знания об объек­тах реальной действительности, в которой изучаются именно эти свойства реальных объектов, называемая геометрией.

Таким образом, тезис В. И. Ленина о том, что «диалектика вещей создает диалектику идей...», имеет отношение, но только к анализу природы абстракции, но и к методам обучения математике. Говоря о том, что в процессе обучения математике необходимо развивать абстрактное мышление школьников, мы, в частности, имеем в виду широкое использование методических приемов, аналогичных вышеприведенному.

В состав математического мышления включаются мыслит ильные умения, адекватные известным методам научного познания. В практике обучения математике от выступают не столько как методы математической деятельно­сти, сколько как комплекс средств, необходимых для усвоения учащимися математики и развития у них качеств, присущих ма­тематическому мышлению. Эти мыслительные умения могут проявиться (и формироваться) в обучении на уровнях эмпириче­ского и научно-теоретического мышления.

Наряду со спецификой математического мышления справедливо P3Дичать специфику физического, технического, гуманитарного и других видов мышления. Именно в силу этой специфики в про­цессе познания конкретных наук (и обучения конкретным учебным предметам) активизируется развитие того или иного компонента мышления вообще, усиливается роль того или иного приема мы­слительной деятельности, того или иного метода познания.

Формирование математического мышле­ния школьников предполагает, таким образом, целенаправленное развитие на предмете математики всех качеств, присущих естественнонаучному мышлению, комплекса мыслительных умений, лежащих в основе методов научного позна­ния, в органическом единстве с формами проявле­ния мышления, обусловленными спецификой самой математики, с постоянным акцентом на развитие научно-теоретического мышления.

В процессе обучения математике естественно уделять особое внимание развитию у учащихся качеств мышления, специфичных для мышления математического. При условии, что проблеме развития мышления школьников при изучении других учебных пред­мета будет уделено должное внимание, опасность одностороннего развития мышления школьников не возникает. Развивающее обу­чение, осуществляемое при изучении других учебных предметов, неизбежно приведет к усилению развития тех компонентов мышле­ния, которые с точки зрения математического образования счи­таются второстепенными.

Органическое сочетание и повышенная активность разнообраз­ных компонентов мышления вообще и различных его качеств про­являются в особых способностях человека, дающих ему возможность успешно осуществлять деятельность творческо­го характера в самых разнообразных областях науки, техники и производства. Так называемые математические способности – это определенная совокупность некоторых качеств творческой личности, сформированных (и применяемых) в процессе математической деятельности.

Совокупность способностей, присущих творческой личности, реализуемых в процессе мышления, называют творческим мышлением.


1.3. Развитие мышления при обучении математике.


1.3.1. Средства и условия развития мышления.

Рассматривая вопрос о средствах и условиях развития мышления, определим эти понятия. Под условиями, согласно теории деятельности, понимают все то, что влияет на характер и эффективность деятельности, а под средством - такие условия, которыми субъект деятельности может произвольно и непроизвольно оперировать в процессе реализации цели.

Среди теорий, рассматривающих проблемы развития мышления, интеллекта, следует выделить ассоцианистскую теорию, стоящую у истоков многих других теорий развития (Д.С. Выготский, С.Л. Рубинштейн и др.). Мышление, согласно этой теории, – это процесс.

Мыслительный процесс делится на акты, этапы, каждый из которых имеет результативное выражение – «продукт». Последний включается в дальнейшее протекание процесса. Предметом психологического исследования являются не продукт, а процесс, процессуальное мышление.

Внутренние закономерности мышления – это закономерности мыслительных операций анализа, синтеза, сравнения, обобщения, абстрагирования и др. и их взаимосвязей.

Согласно этой теории и ученик и ученый овладевают новыми знаниями с помощью мыслительных операций, формы и уровень которых различны. По мере формирования операций формируется интеллект.

Каждый учебный предмет имеет свою специфику, и каждая умственная операция преломляется через специфику содержания предмета. Эти операции не привлекаются извне, они порождают­ся процессом мышления в результате анализа задачи, ее условий.

Одним из ключевых моментов поиска решения задачи, соглас­но рассматриваемой теории, является перенос уже имеющегося способа решения на новую задачу. Перенос решения предпола­гает аналитико-синтетическую деятельность относительно реша­емой и решенной задачи. Использование вспомогательной зада­чи может быть осуществлено только при достаточном анализе основной задачи. Раскрытие общего в обеих задачах - необходи­мое условие переноса. Перенос не осуществляется решающим в силу следующих обстоятельств: не знает, забыл вспомогатель­ную задачу, не умеет в задачах найти общее, недостаточная обоб­щенность результата решенной задачи. Если, например, учащие­ся, изучившие теорему Пифагора, не могут перенести ее условия на ситуацию, связанную с ромбом, значит, ими не проведена аналитико-синтетическая деятельность по анализу задачи, выделе­нию главного, определяющего метод решения задачи.

Содержанием процесса переноса является анализ через син­тез, т. е. рассмотрение ситуации с различных точек зрения.

Говоря о теориях развивающего обучения нельзя не сказать о теории Д.Б. Эльконина – В.В. Давыдова, получившей особенно широкое распространение в начальной школе, в том числе при обучении математике. Эта теория постепенно завоевывает свое место и в средней школе. В чем суть рассматриваемой концеп­ции? В чем выражается эффект развития и за счет чего он получа­ется?

Исходные установки концепции Д.Б. Эльконина – В.В. Давы­дова касаются всех сторон обучения. Это – создание условий для развития личности ребенка, смена содержания обучения, измене­ние форм работы с детьми. Изменение содержания курса диктует­ся основным положением концепции - изучением содержания на уровне теоретического обобщения. Теоретические знания, соглас­но концепции, должны отражать внутренние существенные связи материала, не данные в рамках чувственного опыта. Произвести содержательное обобщение - значит открыть некоторую законо­мерность, взаимосвязь особенных и единичных явлений, открыть закон становления внутреннего единства этого целого. Теорети­ческие обобщения возникают не путем простого сравнения пред­метов, а с помощью выявления генетической основы всех конк­ретных проявлений целостной системы.

Основная форма организации изучения материала в этой тео­рии – постановка и решение учебных задач в рамках проблемно­го подхода. Понятие «учебная задача» введена авторами кон­цепции. Она означает обобщенное знание, обобщенное умение. Примеры обобщенных знаний: как устроено определение поня­тия, почему необходимы неопределяемые понятия, как устроена дедуктивная теория. Примеры обобщенных умений/анализиро­вать условие задачи, составлять прием решения типовой задачи, применять любое правило на практике, читать математическую книгу и многое другое.

Учебная задача существенно отличается от многочисленных частных задач, входящих в программу того или иного класса при традиционном обучении. При решении учебной задачи школьник первоначально овладевает общим способом решения част­ных задач на уровне теоретического обобщения. Задача решает­ся для всех однородных случаев сразу. Разрешение учебной зада­чи всегда заканчивается построением программы, предписания, алгоритма - получением ориентировочной основы для решения сходных задач.

Эта ориентировочная основа является основанием для анали­за условия, планирования, осуществляемых учеником при реше­нии частных задач, для рефлексивных действий, для развития со­ответствующих особенностей мышления, которые являются по­казателями развитого мышления.

Итак, каждая из рассмотренных концепций предлагает свой путь развития мышления, свой путь организации обучения, свои формы и методы работы, свой подход к содержанию материала. Представляется, что, во-первых, в практике обучения нельзя ис­ходить из одной, пусть даже очень эффективной, концепции. Процесс обучения многогранен, поэтому необходим подход к нему с точек зрения различных теорий, различных концепций. Во-вто­рых, теории развивающего обучения не только не противоречат друг другу, но имеют много общего. Все они предполагают обу­чение учащихся ориентированию в неопределенных ситуациях, анализу этих ситуаций, уточнению целей, поиску выхода из за­труднительной ситуации, осознанию путей выхода из ситуации.

Рассмотренные теории могут найти свое место в процессе обу­чения - в организованном процессе передачи старшим поколени­ем младшему своего опыта.

Многие педагоги и психологи в качестве важнейшего показа­теля развития личности выделяют наличие систематизированных знаний, накопление фонда знаний относят к одной из важнейших задач умственного воспитания, считают, что если школа не доби­вается от учащихся глубоких, прочных знаний, то она не может развивать мышление и творческие способности. Знания как пред­мет обучения являются лишь одной из целей обучения, но этот такая цель, в которой концентрируются другие цели обучения. Без знаний не может быть умений. Знания являются предпосылкой, средством и результатом творчества. Без глубоких систе­матизированных знаний невозможно формирование мировоззре­ния. Достаточно полный и систематизированный запас знаний об окружающем мире является важнейшим показателем разви­тия личности учащегося. Знания - не только фонд для осуществ­ления мышления. Усвоение содержания не есть акт простого при­своения знаний. Осознание содержания даже при предъявлении его в готовом виде объяснительно-иллюстративным методом предполагает понимание его внутренней логики, различных вза­имосвязей элементов знаний, соотнесение новых знаний с имею­щейся системой знаний, ее дополнение, изменение. Усвоение зна­ний при любых методах обучения предполагает осуществление мыслительных операций, заложенных в содержании, результа­том выполнения которых и является осознание содержания. Логика содержания в значительной мере определяет логику позна­ния. И развитие происходит при всех формах передачи знаний, хотя и в разной степени. При передаче знаний также предполага­ется и деятельность прогнозирования при восприятии материала, предвосхищение взаимосвязей в этом материале. Происходит со­поставление нового с собственным опытом, критический его ана­лиз. Возникают различные аналогии. И если ученик впервые в каком-либо содержаний встречается, например, с отношением транзитивности и понимает его в соответствующем контексте, то это хоть и небольшое, но продвижение в развитии его мышления.

Итак, создание системы знаний, наличие этой системы являет­ся и условием, и средством, и показателем развития мышления.

Но знания важны не сами по себе. Важно функционирование знания в мышлении, выработка собственных практических ре­шений под воздействием знаний. Необходимо заботиться не про­сто о системе знаний, а об интеграции знаний в такую систему, которая соответствует логике решения задач. Гибкость, подвиж­ность, обобщенность, осознанность, систематизированность зна­ний приобретается и проявляется в применении знаний, в умениях применять знания.

Умение есть овладение «технологией» деятельности, т. е. про­цессом ее построения, контроля, коррекции и оценки. Многие пе­дагоги и психологи под развитием личности субъекта понимают процесс становления его готовности к самостоятельной органи­зации своей работы в соответствии с возникшими или поставлен­ными задачами различного уровня сложности, в том числе выхо­дящими за рамки ранее усвоенного. А готовность субъекта к са­мостоятельной деятельности напрямую зависит от сформирован­ности умений.

Если исходить из классификации умений, разделяющей уме­ния на организационные, практические и интеллектуальные, то последние можно разделить на общие и специальные.

В связи с нашим подходом к анализу процесса мышления среди общих интеллектуальных умений выделим умения по осуществлению отдельных мыслительных операций, формально-логические умения, характеризуемые значительной мерой жесткости, алгоритмичности, и умения эвристического поиска.

Тогда к первой группе умений можно отнести умения обоб­щать, сравнивать, анализировать и т. д. Ко второй группе – уме­ние рассуждать доказательно, предъявляя аргументы для подтверждения каждого факта, правильно формулировать определения понятий, подводить под определение, распознавать свойства и признаки, и многое другое. К умениям вести эвристический поиск можно отнести умения видоизменять цель, разбивать задачи на подзадачи, рассматривать один и тот же объект с различных сто­рон, выделять частные случаи для получения общей закономер­ности и т.д.

Характеристики

Тип файла
Документ
Размер
27 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6376
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее