113796 (591426), страница 4

Файл №591426 113796 (Развитие логического мышления учащихся при решении задач на построение) 4 страница113796 (591426) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Качество мышления, которое является антиподом данному качествy, есть пассивность мышления. Отметим, что пассивность мышления является одной из основных причин слабого математического развития некоторых школьников и, в частности, формального усвоения содержания обучения математике.

В числе качеств научного мышления важное место занимает критичность мышления, которая характеризуется умением оценить правильность выбранных путей решения поставленной проблемы, получаемые при этом результаты с точки зрения их достоверности, значимости.

В процессе обучения математике это качество мышления у учащихся проявляется склонностью (и умением) к различного вида проверкам, грубым прикидкам найденного (искомого) результата, а также к проверке умозаключений, сделанных с помощью индук­ции, аналогии и интуиции.

Критичность мышления школьников проявляется также в уме-ми найти и исправить собственную ошибку, проследить заново все выкладки или ход рассуждения, чтобы натолкнуться на противоречие, помогающее осознать причину ошибки.

Отметим, что антипод данного качества мышления – некритичность еще свойственна многим учащимся средней школы.

С критичностью мышления тесно связана доказательность мышления, характеризуемая умением терпеливо и скрупулезно относиться к собиранию фактов, достаточных для вынесения какого-либо суждения; стремлением к обоснованию каждого шага решения задачи, умением отличать результаты достоверные от правдоподобных; вскрывать подлинную причинность связи посылки и заключения.

Наконец, к числу важных качеств научного мышления относит­ся организованность памяти.

Память каждого школьника является необходимым звеном в его познавательной деятельности, зависит от ее характера, целей, мо­тивов и конкретного содержания.

Организованность памяти означает способность к запоминанию, долговременному сохранению, быстрому и правильному воспроизведению основной учебной информации и упоря­доченного опыта.

Понятно, что в обучении математике следует развивать у школь­ников как оперативную, так и долговременную память, обучать их запоминанию наиболее существенного, общих методов и приемов решения задач, доказательства теорем; формировать умения сис­тематизировать свои знания и опыт.

Антиподом этого качества мышления является неоргани­зованность памяти, в силу которой происходит как запоми­нание несущественной учебной информации, так и забывание основ­ной. Правда, при забывании мелких и незначительных фактов становится возможным запоминать достаточно большую по объему и богатую по содержанию информацию.

Организованность памяти дает возможность соблюдать принцип экономии в мышлении. Поэтому нецелесообразно загружать память учащихся ненужной или незначительной информацией, не накап­ливать у них опыт учебной деятельности, бесполезной для дальней­шего. Так, например, до недавнего времени школьники «разучива­ли» решения типовых текстовых задач, не имеющих большого по­знавательного значения; это весьма отрицательно сказывалось и на развитии их памяти.

Опыт показывает, что организованность памяти формируется у школьников особенно эффективно, если запоминание каких-либо фактов основано на понимании этих фактов. Поэтому зубрежка школьниками многочисленных правил является не только непро­дуктивной деятельностью, но и попросту вредной.

В процессе обучения математике развитию и укреплению памяти школьников способствуют: а) мотивация изучения; б) составление плана учебного материала, подлежащего запоминанию; в) широкое использование в процессе запоминания сравнения, аналогии, классификации и т. п.

Такие качества научного мышления, как ясность, точность, лаконичность речи и записи, не нуждаются в особых комментариях.


1.2.2. Основные компоненты математического мышления и дидактические пути их развития у учащихся.

Конкретное мышление

Специфика математического мышления проявляется не только в том, что ему присущи все качества научного мышления, но и в том, что для него характерны особые формы (разновидности проявления мышления), которые в ходе их описания обычно выделяются специальными терминами: конкретное и абстрактное мышление, функциональное мышление, интуитивное мышление и т.п.

Так как в процессе обучения математике обычно используют­ся так называемые конкретно – индуктивные или абстрактно-дедук­тивные методы обуче­ния, то, естественно, возника­ет необходимость (из дидакти­ческих соображений) говорить о конкретном (предметном) или абстрактном мышлении школьников.

Конкретное (предметное) мышление – это мышление в тесном взаимодействии с конкретной моделью объекта.

Различаются две формы конкретного мышле­ния:

1) неоперативное (наблюдение, чувственное восприя­тие);

2) оперативное (непосредственные действия с конкрет­ной моделью объекта).

Неоперативное конкретное мышление чаще всего проявляется у дошкольников и младших школьников, которые мыслят лишь наглядными образами, воспринимая мир лишь на уровне пред­ставлений. То, что школьники на этом уровне развития не владе­ют понятиями, ярко иллюстрируется опытами психологов школы Ж. Пиаже. Рассмотрим некоторые из них:

1. Детям демонстрируются два сосуда (рис. 2 , а) одинаковой формы и размеров, содержащие поровну темную жидкость. Дети легко устанавливают равенство жидкостей в первом и втором сосуде. Далее, на виду у детей жидкость из одного сосуда перели­вают в другой более высокий и узкий (рис. 2 , б) и предлагают срав­нить количество жидкости в этом сосуде и оставшемся нетронутым. Дети утверждают, что в новом сосуде жидкости стало больше.

2. Детям демонстрируют цветы: васильки и маки (например, 20 маков и 3 василька) и спрашивают, чего больше: цветов или ма­ков? И хотя дети как будто бы знают, что и васильки и маки суть цветы, они отвечают, что маков больше.

3. Через полую непрозрачную трубку (рис.3) на виду у детей пропускают проволоку с фиксированными на ней шариками (красным, белым, синим, зеленым), пока все шарики не скроются в трубке.

Дети наблюдают порядок «вхождения» шариков в трубку. Затем начинают обратное движение проволоки, предлагая детям назвать цвет шарика, который теперь выйдет первым, вторым и т. д. Дети обычно называют шарики в том порядке, в каком они «вхо­дили» в трубку.

Дело в том, что неоперативное мышление детей еще непосред­ственно и полностью подчинено их восприятию и потому они по­ка не могут отвлечься, абстрагироваться с помощью понятий от некоторых наиболее бросающихся в глаза свойств рассматривае­мого предмета. В частности, думая о первом сосуде (см. первый опыт Ж. Пиаже), дети смотрят на новый сосуд и им представляет­ся, что жидкость в нем занимает больше мест а, чем раньше (уровень жидкости стал выше).

Их мышление, протекающее в форме наглядных образов, приводит к выводу (следуя за восприя­тием), что жидкости в сосудах стало непоровну.

В процессе обучения математике в среднем и старшем звене школы воздействие на неоперативное конкретное мышление уча­щихся проявляется при использовании различных наглядных » пособий, диафильмов, кино и телевидения.

Возвращаясь к описанным выше трем опытам Ж. Пиаже, от­метим, что сам Пиаже объясняет ошибочные ответы детей отсутст­вием у них способностей к особым мыслительным операциям (постоянство целого, устойчивое отношение части к целому и обрати­мость), без формирования которых невозможно овладение поня­тием натурального числа.

Вместе с тем Ж. Пиаже утверждает (и это утверждение согла­суется с мнениями многих советских психологов), что оператив­ное конкретное мышление является более действенным для под­готовки детей к овладению абстрактными понятиями. Самостоя­тельная мыслительная деятельность выделяется именно по мере развития практической деятельности, лежащей в основе развиваю­щейся психики ребенка.

Конкретное мышление играет большую роль в образовании абстрактных понятий, в конструировании особых свойств математического мышления, развитие которых способствует познанию математических абстракций.

Поэтому психологи рекомендуют широко использовать различ­ные дидактические пособия (например, геоплан Гаттеньо, лине­ечки Кюзинера и т. п.), с которыми школьники могут действовать непосредственно в процессе обучения. В процессе обучения мате­матике роль конкретного мышления особенно велика в младших и средних классах. В целях развития у учащихся этого типа мы­шления, помимо традиционного применения наглядных средств в обучении, необходимо учить школьников общим рассуждениям на конкретных (частных) примерах.

В старших классах мера конкретного в процессе познания убывает, в то время как само конкретное меняет свою форму, на смену конкретному приходит абстрактное, которое должно выступать как целесообразное обобщение конкретного.

Особенно полезно использовать это положение при введении в новую тему. В учебном пособии И. К. Андронова и А. К. Окунева таким путем рассматривается, например, вопрос о введении понятия о тангенсе острого угла (решается задача о целесообразном наклоне крыши здания, затем вводится понятие тангенса угла наклона и, наконец, изученные круговые функции применяются к определению расстояния Земля – Луна).

Содействуя развитию у учащихся неоперативного конкретно­го мышления, полезно помнить о том, что постоянное обращение к наглядным представлениям может иногда оказаться вредным. Так, например, чрезмерное увлечение наглядностью преподавания начал стереометрии может затормозить формирование у учащихся пространственного воображения.

Абстрактное мышление

Абстрактное мышление тесно связано с мыслительной опе­рацией, называемой абстрагированием. Напомним, что абстраги­рование имеет двойственный характер: негативный (от­влекаются от некоторых сторон или свойств изучаемого объекта) и позитивный (выделяют определенные стороны или свойства этого же объекта, подлежащие изучению).

Поэтому, абстрактным мышлением называют мышление, ко­торое характеризуется умением мысленно отвлечься от конкретного содержания изучаемого объекта в пользу его общих свойств, подле­жащих изучению.

Абстрактное мышление может проявляться в про­цессе обучения математике:

а) в явном виде. Например, рассматривая в курсе геометрии понятие геометрического тела, мы явно отвлекаемся от и всех свойств реальных тел, кроме формы, размеров и положения в пространстве;

б) в неявном виде. Например, при счете предметов. конкретного множества мы неявно отвлекаемся от свойств каждого ; отдельного предмета, полагая, что все предметы одинаковы (тож­дественны).

Абстрактное мышление можно подразделить на:

1) аналитическое мышление;

2) логическое мышление;

3) пространственное мышление.

1. Аналитическое мышление характеризуется четкостью отдельных этапов в познании, полным осознанием, как его содержания, так и применяемых операций. Оно проявляется в процессе обучения через:

а) аналитический способ доказательства теорем и решения задач (чтобы узнать, надо знать);

б) решение задач методом уравнения;

в) исследование результата решения некоторой задачи и т.п.

В свою очередь, побуждая школьников к упомянутой выше ма­тематической деятельности, учитель может способствовать раз­витию у учащихся аналитического мышления.

Аналитическое мышление не выступает изолированно от других видов абстрактного мышления; на отдельных этапах мышления оно может лишь превалировать над теми видами, с которыми оно выступает совместно. Этот вид мышления тесно связан с мысли­тельной операцией анализа .

2. Логическое мышление характеризуется обычно умением выводить следствия из данных предпосылок, умением вычленять частные случаи из некоторого общего положения, уме­нием теоретически предсказывать конкретные результаты, обоб­щать полученные выводы и т. п. Известно, что развитие логического мышления школьников в процессе обучения математике является предметом особой заботы учителей и методистов. В процессе обу­чения математике логическое мышление проявляется (и разви­вается) у учащихся, прежде всего в ходе различных математиче­ских выводов: индуктивных (полная индукция) и дедуктивных, в ходе доказательств теорем, обоснований решения задачи т.п.

3. Пространственное мышление характе­ризуется умением мысленно конструировать пространственные образы или схематические конструкции изучаемых объектов и выполнять над ними операции, соответствующие тем, которые дол­жны были быть выполнены над самими объектами.

Характеристики

Тип файла
Документ
Размер
27 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6363
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее