113796 (591426), страница 3

Файл №591426 113796 (Развитие логического мышления учащихся при решении задач на построение) 3 страница113796 (591426) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

В.В. Давыдов, исследовавший вопросы формирования научно-теоретического мышления у школьников, показал, что «лишь такое математическое, физическое и прочее теоретическое мышление мо­жет истинно отразить свой объект, которое выступает как логи­ческое мышление, перерабатывающее свой опытный материал в категориях логики... Так, лишь задавая человеку содержатель­ное обобщение, можно полагать, что он будет ориентиро­ваться именно на существенные свойства вещи и вычленять их из массы несущественных свойств, т. е. будет обладать «чутьем про­цесса». Критерий же такого обобщения (как и всех других катего­рий) формулирует диалектическая логика, высту­пающая тем самым и главным «критерием» теоретиче­ского мышления...»

Таким образом, полноценное математическое мышление есть, прежде всего, мышление диалектическое.

Математическое мышление, являясь мышлением диалектиче­ским, есть вместе с тем мышление естественнонаучное и потому обладает многими свойствами, присущими последнему.

Естественнонаучное мышление может быть охарактеризовано со стороны соответствующих ему умений осуществлять поэтапное решение научных проблем. Совокупность таких умений определяет так называемый естественно научный метод познания, который состоит из следующих элементов: понимание проблемы; точное определение ее и отграничение от других проблем; изучение всех ситуаций, связанных с данной проблемой; планирование поиска решения проблемы; выбор наиболее вероятной гипотезы; планирование и проведение эксперимента по проверке гипотезы; проведение контрольного эксперимента; выводы и их обоснование, выбор оптимального способа решения; распростра­нение выводов на новые ситуации, в которых действуют те же фак­торы.

Многие конкретные методы обучения естественным наукам разрабатываются в соответствии с ее указанным методом познания; ха­рактеристика его основных этапов, специфика соответствующих этим этапам умений могут и должны учитываться и в обучении ма­тематике, в частности при постановке учебных математических задач с прикладной направленностью.

О качествах научного (математического) мышления

Математическое мышление имеет свои специфические черты и особенности, которые обусловлены спецификой изучаемых при этом объектов, а также спецификой методов их изучения.

Прежде всего, отметим, что математическое мышление часто характеризуют проявлением так называемых математических спо­собностей. В психолого-дидактической и методической литературе в структуру математических способностей включаются многие ка­чества мыслительной деятельности, именуемые либо как собствен­но математические способности (В. А. Крутецкий), либо как особенности мышления ма­тематика (А. Н. Колмогоров), ибо как качества ума (К. К. Платонов), либо как компонен­ты обучаемости (3. И. Калмыкова) и т.д.

Существует общее мнение об активной работе в процессе мате­матического мышления определенных качеств мышления (напри­мер, гибкость, пространственное воображение, умение выделять существенное и т. д.), которые в равной степени могут быть соот­несены как к математическому мышлению, так и к мышлению фи­зическому, техническому и т. д., т. е. к научному мышлению вообще.

Эти особенности мышления мы будем называть качества­ми научного мышления. Они представляют особую дидактическую значимость: формирование их у школьников способ­ствует не только успешному обучению математике, но и успешному обучению другим предметам естественно-математического цикла.

Последняя мысль подтверждается результатами исследований советского педагога Ю. К. Бабанского, показавшего, что успеш­ность учения школьников тесно связана с сформированностыо y них таких качеств мышления, как самостоятельность мышления (коэффициент корреляции 0,89), умение выделять существенное (0,87), рациональность мышления (0,85), гибкость мышления (0,85), логичность речи (0,85), критичность мышления (0,84), зависимость успешности учения от уровня развития памяти и внимания оказалась меньшей.

К числу таких качеств научного мышления относятся гиб­кость (нешаблонность), оригинальность, глуби­на, целенаправленность, рациональность, широта (обобщенность), активность, критичность, доказа­тельность мышления, организо­ванность памяти, четкость и лаконичность речи и записи.

Все эти качества мышления сильно кор­релируют друг с другом, часто выступают в органическом единстве. Поэтому ранжи­рование их по значимости весьма затруд­нительно, да и вряд ли целесообразное ди­дактической точки зрения. Важнее попытаться охарактеризовать их проявления практически.

Будем считать характерным для проявления гибкости мышле­ния умение целесообразно варьировать способы решения познава­тельной проблемы, легкость перехода от одного пути решения про­блемы к другому; умение выходить за границы привычного способа действия, находить новые способы решения проблем при изменении задаваемых условий; умение перестраивать систему усвоенных знаний по мере овладения новыми знаниями и накопления опыта.

Таким образом, гибкость мышления обнаруживается в быстро­те ориентировки в новых условиях, в умении видеть новое в из­вестном, выделять существенное, выступающее в скрытой форме. Интересно отметить, что А. Эйнштейн указывал на гибкость мышления как на характерную черту творчества.

Антиподом гибкости мышления является косность мышления, чаще называемая шаблонностью мышления или психологической инерцией.

Знания и опыт весьма часто воспроизводятся сознанием по определенным, привычным для данного индивидуума «проторенным путям». Возникает предрасположение к какому-либо конкретному методу или образу мышления, желание следовать известной системе правил в процессе решения задач, – шаблонность мышления.

Шаблонность мышления является весьма серьезной помехой изобретательству и вообще творческой деятельности; нередко шаблонность мышления выступает как следствие обучения. И действительно, опыт показывает, что шаблонность мышления весьма характерна для многих школьни­ков (как часто, например, школьники на­чинают решать незнакомую им задачу тем способом, который им «первым пришел в голову»). Именно на преодоление этого качества мышления направлены известные эвристики типа: «Забудь о том, что знаешь», «Помни, что методов много, а не один», «Не иди по прото­ренному пути» и т. п.

С шаблонностью мышления связан и эффект, называемый функ­циональной устойчивостью, согласно которому в большинстве случаев объекты, используемые в данной ситуации в обычных для них функциях, не используются в новом качестве.

Этим, в частности, объясняются те трудности, которые связаны с переосмысливанием школьниками условия задачи, являющимся необходимой предпосылкой ее успешного решения. Вот один из характерных примеров.

рис. 1

Параллельные прямые АВ и CD пересечены прямой EF, величина одного из внутренних углов при точке О (рис. 1 ) равна 130°. ОМ – биссектриса этого угла. Определить величину угла, обра­зованного ею с прямой CD.

Здесь прямая ОМ выступает одновременно и как биссектриса, и как секущая. Ее роль как биссектрисы угла создает функциональ­ного устойчивость, в силу которой учащиеся часто затрудняются в: использовании этой прямой в качестве секущей.

Следует отметить, что шаблонность мышления, присущая многим школьникам, имеет как негативный, так и позитивный харак­тер. Она избавляет школьника от необходимости заново усваивать те или иные операции, решать задачи тех типов, которые неодно­кратно им встречаются, безусловно, положительно сказывается на результатах обучения.

Однако шаблонность мышления мешает школьникам мыслить оригинально, отделять главное от второстепенного, отыскивать новые пути решения задач, применять известные им знания в но­вой ситуации. Понятно, что все это не способствует развитию твор­ческих потенций школьника.

Поэтому в обучении математике весьма важно помогать школьникам преодолевать этот «психологический барьер», развивать у них гибкость мышления.

Высший уровень развития нешаблонного мышления проявляет­ся в оригинальности мышления, которая в школьном обучении математике, как правило, выступает в необычности спо­собов решения известных учащимся задач. Оригинальность мышле­ния, чаще всего, проявляется как следствие глубины мышления. Глубина мышления характеризуется умением про­никать в сущность каждого из изучаемых фактов, в их взаимосвязи с другими фактами; выявлять специфические, скрытые особенности в изучаемом материале (в условии задачи, способе ее решения, ре­зультате); умением конструировать модели конкретных ситуаций. Глубину мышления нередко называют умением выделять существенное.

Известно, что познание регулируется по двум каналам отраже­ния реальной действительности (объекта познания): по весьма узкому каналу отражения самого объекта и весьма широкому ка­налу отражения его фона (совокупности связанных с этим объек­том различных свойств его самого и других, связанных с ним объ­ектов); при этом второй канал часто функционирует бессознатель­но. Это вызвано тем, что знания и опыт откладываются в памяти (и воспроизводятся в ней) своеобразными комплексами понятий и представлений – «готовыми фрагментами ответов» на соответствую­щие вопросы. В процессе воспроизведения вспоминается не только то, что требуется вспомнить, но и многие бесполезные в данной си­туации положения, так или иначе связанные в сознании с основным объектом.

Процесс отделения фона от самого объекта – сложный процесс. Величина фона в значительной степени зависит от тех условий, в которых происходит изучение объекта, равно как и от умений изу­чить этот объект в его существенных свойствах достаточно глубоко. Поэтому глубину мышления (умение выделять существенное) пра­вомерно считают качеством, формирование которого у школьников является важнейшим условием успешности обучения математике.

Таким образом, глубина мышления проявляется прежде всего в умении отделить главное от второстепенного, обнаружить логическую структуру рассуждения, отделить то, что строго доказано, от того, что принято «на веру», извлекать из математического текста главное из того, что в нем сказано (и не более того), и т.д.

Антиподом глубины мышления является поверхность мышления. Именно этим можно объяснить обычное для учащихся затруднение, возникающее у них при ответе на следующий вопрос: «Является ли последовательность вида 2,2,2, … прогрессией, если является, то какой?» Усвоив поверхностно определение про­грессии, учащиеся не понимают, что ответ на этот вопрос целиком полностью зависит от того, оговорена ли в определении возможность равенства нулю разности (или единице знаменателя прогрессии).

Целенаправленность мышления характеризуется стремлением осуществлять разумный выбор действий при решении какой-либо проблемы, постоянно ориентируясь на поставленную той проблемой цель, а также в стремлении отыскать наиболее крат­чайшие пути ее достижения.

Наличие у школьников этого качества мышления особенно важно при поиске плана решения математических задач, при изучении нового материала и т. д.

Этому способствуют специально подобранные учителем задачи, вводящие в изучение новой темы, посредством которых перед уча­щимися раскрывается целесообразность ее изучения и последовательность рассмотрения относящихся к ней вопросов.

Целенаправленность мышления дает возможность более эконо­мичного решения многих задач, которые обычным способом реша­ется если не сложно, то слишком долго.

Целенаправленность мышления тесно связана с таким нравст­венным качеством личности, как любознательность, своеобразным антиподом которому является любопытство. В основе того и другого качества личности лежат условные реф­лексы, в силу которых избирательная активность человека всегда имеет целенаправленный, намеренный характер.

Первое из этих качеств (любознательность) обогащает знания и опыт человека именно в силу своей целенаправленности; любопытство, превращаясь в самоцель, гасит стремление человека к познанию, как только оно удовлетворено. Поэтому в обучении математи­ке следует всячески поощрять любознательность учащихся и не поощрять любопытство.

«Чтобы обучаться, нам нужно только понимать то (приспосаб­ливаться к тому), чему нас учат. Но, чтобы с пользой применять знания, нужно уметь задавать вопросы типа: «Так ли это?», «По­чему?» – и особенно самый мощный из них: «А что, если...?» Чело-пек, который постоянно задает такие вопросы, уже не просто учится».

Антиподом целенаправленности является бесцельность мышления. Как уже отмечалось, целенаправленность мышле­ния дает возможность более экономичного решения многих задач, которые обычным способом решаются если не сложно, то слишком долго. Тем самым целенаправленность мышления способствует проявлению такого качества, как рациональность мышления, характеризуемого склонностью к экономии времени и средств для решения поставленной проблемы, стремлением отыскать оптималь­но простое в данных условиях решение задачи, использовать в ходе решения схемы, символику и условные обозначения.

Рациональность мышления часто проявляется при наличии широты мышления, которая характеризуется способностью к формированию обобщенных способов действий, имеющих широ­кий диапазон переноса и применения к частным, нетипичным слу­чаям; умение охватить проблему в целом, не упуская при этом имеющих значение деталей; обобщить проблему, расширить область приложения результатов, полученных в процессе ее разрешения. Поэтому широту мышления часто называют обобщенностью мышления.

Это качество мышления проявляется в готовности школьников принять во внимание новые для них факты в процессе деятельности в известной (знакомой им) ситуации.

Широта мышления учащихся проявляется также в умение классифицировать и систематизировать изучаемые математические факты, обобщать их, использовать обобщение и аналогию как методы решения задач.

Антиподом широты мышления является узость мышления. Именно этим, например, объясняется распространенная ошибка учащихся, считающих единицу простым числом, и т. п.

Все рассмотренные выше качества мышления могут проявиться лишь при условии проявления активности мышления, кото­рая характеризуется постоянством усилий, направленных на ре­шение некоторой проблемы, желанием обязательно решить поставленную проблему, изучить различные подходы к ее решению, исследовать различные варианты постановки этой проблемы в зависимости от изменяющихся условий и т.д.

Активность мышления у учащихся проявляется также в желание рассмотреть различные способы решения одной и той же задачи, различные определения одного и того же математического понятия, обратиться к исследованию полученного результата и т.п.

Характеристики

Тип файла
Документ
Размер
27 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6374
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее