112828 (591185), страница 8

Файл №591185 112828 (Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школы) 8 страница112828 (591185) страница 82016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

Отношение числа благоприятствующих событию А элементарных исходов к их общему числу, называют вероятностью события А и обозначают Р(А). В рассматриваемом примере всего элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, вероятность того, что взятый шар окажется цветным, равна Р(А)=5/6.Это число и дает ту количественную оценку степени возможности появления цветного шара, которую мы хотели найти. Дадим теперь определение вероятности.

Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу.

, где m - число элементарных исходов, благоприятствующих А; n – число всех возможных элементарных исходов испытания.

П

n

m

P(A)=

n

m

олезно формуле вероятности события придать наглядную иллюстрацию.

И
з определения вероятности вытекают следующие ее свойства:

Свойство 1. Вероятность достоверного события равна единице.

Свойство 2. Вероятность невозможного события равна нулю.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Доказательства данных свойств могут быть предложены учащимся в качестве домашнего задания.

Задачи:

  1. Для новогодней лотереи отпечатали 1500 билетов, из которых 120 выигрышных. Какова вероятность того, что купленный билет окажется выигрышным?

  2. Для экзамена подготовили билеты с номерами от 1 до 25. какова вероятность того, что взятый наугад учеником билет имеет: 1) однозначный номер; 2) двузначный номер?

  3. Ученик при подготовке к экзамену не успел выучить один из тех 25 билетов, которые будут предложены на экзамене. Какова вероятность того, что ученику достанется на экзамене выученный билет?

  4. Женя купил 2 лотерейных билета, и один из них оказался выигрышным. Можно ли утверждать, что вероятность выигрыша в лотереи ?

  5. Для школьного новогоднего вечера напечатали 125 пронумерованных пригласительных билетов, между которыми предполагается разыграть главный приз. Какова вероятность, что номер счастливчика будет оканчиваться: а) на тройку; б) на девятку? в) Вова получил пригласительный билет с номером 33, а Таня – 99. Верно ли, что у Вовы больше шансов получить главный приз?

  6. Два друга живут в одном доме, а учатся в разных классах. Уроки в школе заканчиваются в интервале от 13 до 14 часов. После занятий они договариваются ждать друг друга на автобусной остановке в течение 20 минут. Сколько приблизительно раз за год им удаётся поехать домой вместе, если в году 200 учебных дней?

Занятие №5. Решение вероятностных задач с помощью формул комбинаторики.

При изучении этой темы надо, чтобы учащиеся отчетливо представляли себе роль сочетаний, размещений и перестановок в различных вероятностных задачах и научились по формулировкам задач определять, какой из видов соединений будет использован при решении той или иной задачи. Здесь можно руководствоваться следующим: если множество исходов составляют всевозможные комбинации из n элементов по k, то в задаче будут фигурировать сочетания; если же всевозможные комбинации из n элементов по n, то в задачах идет речь о перестановках; размещения будут тогда, когда речь идет о порядке элементов в рассматриваемых комбинациях.

Задачи:

  1. Набирая номер телефона, абонент забыл последние две цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры.

  2. В классе 30 учащихся. Из них 12 мальчиков, остальные девочки. Известно, что к доске должны быть вызваны двое учащихся. Какова вероятность, что это девочки?

  3. Набирая номер телефона, состоящий из 7 цифр, Антон забыл, в какой последовательности идут три последние цифры. Помня лишь, что это цифры 1, 5 и 9, он набрал первые 4 цифры, которые знал, и наугад комбинацию из цифр 1, 5 и 9. какова вероятность того, что Антон набрал верный номер?

  4. В пачке находятся одинаковые по размеру 7 тетрадей в линейку и 5 в клетку. Из пачки наугад берут 3 тетради. Какова вероятность того, что все 3 тетради окажутся в клетку?

  5. Четыре билета на ёлку распределили по жребию между 15 мальчиками и 12 девочками. Какова вероятность того, что билеты достанутся 2 мальчикам и 2 девочкам?

  6. На полке 12 книг, из которых 4 – это учебники. С полки наугад снимают 6 книг. Какова вероятность того, что 3 из них окажутся учебниками?

Занятие №6. Статистическая вероятность.

Классическое определение не требует, чтобы испытание обязательно проводилось в действительности: теоретическим способом определяются все равновозможные и благоприятствующие событию исходы. Такое определение предполагает, что число элементарных исходов испытания конечно и выражается конкретным числом. Однако на практике – при изучении случайных явлений в естествознании, экономике, медицине, производстве – часто встречаются испытания, у которых число возможных исходов необозримо велико. А в ряде случаев до проведения реальных испытаний трудно или не возможно установить равновозможность исходов испытания. Поэтому, наряду с классическим, на практике используют и так называемое статистическое определение вероятности. Для знакомства с ним требуется ввести понятие относительной частоты.

Относительной частотой события A называют отношение числа испытаний m, в которых событие появилось, к общему числу фактически произведенных испытаний n.

Таким образом, вероятность вычисляют до опыта, а относительную частоту после опыта.

Длительные наблюдения показали, что если в одинаковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свойство состоит в том, что в различных опытах относительная частота изменяется мало, колеблясь около некоторого постоянного числа.

Например, по данным шведской статистики, относительная частота рождения девочек в 1935 г по месяцам характеризуется следующими числами: 0,486; 0,489; 0,490;0,471;0,478;0,482;0,462;0,484;0,485;0,491;0,482;0,473. относительная частота колеблется около числа 0,482, которое можно принять за приближенное значение вероятности рождения девочек

Таким образом, в качестве статистической вероятности события принимают относительную частоту или число, близкое к ней.

Свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности. Назовите их.

Задачи:

  1. Во время тренировки в стрельбе по цели было сделано 30 выстрелов и зарегистрировано 26 попаданий. Какова относительная частота попадания по цели в данной серии выстрелов?

  2. Отдел технического контроля обнаружил пять бракованных книг в партии из случайно отобранных 100 книг. Найти относительную частоту появления бракованных книг.

  3. Дано распределение дней рождения старшеклассников (учащихся 9-11 классов) по месяцам и дням недели

пн

вт

ср

чт

пт

сб

вс

январь

0

1

3

4

0

0

1

февраль

2

4

1

2

3

0

2

март

2

2

0

2

4

2

0

апрель

3

2

5

8

0

3

2

май

4

0

2

1

1

1

2

июнь

4

2

2

1

3

2

0

июль

0

1

4

2

1

2

0

август

1

2

4

4

2

0

1

сентябрь

0

1

2

1

2

3

5

октябрь

1

2

0

0

2

1

0

ноябрь

0

2

4

1

1

5

1

декабрь

2

2

3

2

0

2

2

Найдите относительные частоты событий:

А = старшеклассник родился в майское воскресенье;

В =старшеклассник родился в зимний четверг;

С = старшеклассник родился в понедельник;

D = старшеклассник родился весной.

Занятие №7. Геометрическая вероятность.

Геометрическая вероятность – это своеобразный аналог формулы классического определения вероятности события: отношение двух натуральных чисел (количество благоприятных исходов к количеству всевозможных исходов) в формуле классического определения вероятности событий заменяется отношением мер (длин, площадей, объемов) геометрических множеств, где оба множества (в общем случае) представляют собой бесконечные множества исходов. Тем самым достигается возможность найти вероятность и в случае бесконечного множества исходов. В этом – конечное и бесконечное множества исходов – и заключается основное различие между классическим определением вероятности события и геометрическим.

Рассмотрение геометрической вероятности развивает у учащихся пространство воображения и способствует формированию умений переводить исходную вероятностную ситуацию на геометрический язык.

Геометрические вероятности можно дать в ознакомительном порядке, разобрав для этого ряд задач.

Задачи:

  1. На отрезке L длины 20 см помещен меньший отрезок l длины 10 см. найти вероятность того, что точка, наудачу поставленная на большой отрезок, попадет и на меньший отрезок. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения.

  2. Внутри квадрата со стороной 10 см выделен круг радиусом 2 см. случайным образом внутри квадрата отмечается точка. Какова вероятность того, что она попадет в выделенный круг?

  3. На плоскости начерчены две концентрические окружности, радиусы которых 5 и 10 см соответственно. Найти вероятность того, что точка, брошенная наудачу в большой круг, попадет также и в кольцо, образованное построенными окружностями. Предполагается, что вероятность попадания точки в плоскую фигуру пропорциональна площади этой фигуры и не зависит от ее расположения.

  4. Перед окопами вдоль прямой линии через каждые 10 м установлены противотанковые мины. Перпендикулярно этой линии движется танк, ширина которого 3 м. Какова вероятность того, что танк пересечет линию установки мин невредимым, то есть, что мина не взорвется?

Занятие №8. Теорема сложения вероятностей.

Из четырех теорем о сложении вероятностей (для двух несовместных событий, для n несовместных событий (обобщение), для событий, образующих полную группу и для противоположных событий) практический интерес для слушателей курса представляют лишь две теоремы: первая и третья. Обе они часто используются при решении вероятностных задач, и поэтому их следует подробно с доказательством рассмотреть на занятии. Теорему о противоположных событиях (как частный случай третьей теоремы) можно поручить рассказать одному из учащихся.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6547
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее