86417 (589988)
Текст из файла
Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
Вятский государственный гуманитарный университет
Математический факультет
Кафедра алгебры и геометрии
Выпускная квалификационная работа
Обобщенно булевы решетки
Выполнил:
студент V курса математического факультета
Онучин Андрей Владимирович
Научный руководитель:
к.ф.-м.н., доцент кафедры алгебры и геометрии ВятГГУ
Чермных Василий Владимирович
Рецензент:
д.ф.-м.н., профессор, зав. кафедрой алгебры и геометрии ВятГГУ
Вечтомов Евгений Михайлович
Работа допущена к защите в государственной аттестационной комиссии
«___» __________2005 г. Зав. кафедрой Е.М. Вечтомов
«___»__________2005 г. Декан факультета В.И. Варанкина
Киров
2005
Содержание
Введение 3
Глава 1 4
1.1. Упорядоченные множества 4
1.2. Решётки 5
1.3. Дистрибутивные решётки 7
1.4. Обобщённые булевы решётки, булевы решётки 8
1.5. Идеалы 9
Глава 2 11
2.1. Конгруэнции 11
2.2. Основная теорема 16
Библиографический список 22
Введение
Булева решётка представляет собой классический математический объект, который начал интенсивно изучаться в работах М. Стоуна 30-е годы 20-го века, расширением этого понятия до обобщённо булевых решёток занимались Г. Гретцер и Е. Шмидт в своих трудах конца 50-х годов.
Цель данной работы: установление взаимно однозначного соответствия между конгруэнциями и идеалами в обобщённо булевых решётках. (Для булевых решёток это положение доказано в книге [2], кроме того, сформулировано в книге [3] в качестве упражнений). А также – установление связи между обобщённо булевыми решётками и булевыми кольцами.
Данная дипломная работа состоит из двух глав: в первой главе даны основные понятия, а так же содержатся базовые сведения из теории решёток. Кроме того, в первой главе рассмотрено несколько простейших теорем.
Вторая глава представляет собой основную часть данной дипломной работы. Опираясь на работы Гретцера Г., но более подробно, рассмотрены свойства конгруэнций и связь конгруэнций и идеалов в обобщённо булевых решётках (Теоремы 2.1, 2.2, 2.3.). Кроме того реализована основная цель данной дипломной работы: установлена связь между булевыми кольцами и обобщённо булевыми решётками (Основная теорема).
Глава 1
1.1. Упорядоченные множества
Упорядоченным множеством P называется непустое множество, на котором определено бинарное отношение , удовлетворяющее для всех
следующим условиям:
1. Рефлексивность: .
2. Антисимметричность. Если и
, то
.
3. Транзитивность. Если и
, то
.
Если и
, то говорят, что
меньше
или
больше
, и пишут
или
.
Примеры упорядоченных множеств:
-
Множество целых положительных чисел, а
означает, что
делит
.
-
Множество всех действительных функций
на отрезке
и
означает, что
для
.
Цепью называется упорядоченное множество, на котором для любых имеет место
или
.
Используя отношение порядка, можно получить графическое представление любого конечного упорядоченного множества P. Изобразим каждый элемент множества P в виде небольшого кружка, располагая x выше y, если . Соединим x и y отрезком. Полученная фигура называется диаграммой упорядоченного множества P.
П римеры диаграмм упорядоченного множества:
1.2. Решётки
Верхней гранью подмножества Х в упорядоченном множестве Р называется элемент a из Р, больший или равный всех x из X.
Точная верхняя грань подмножества X упорядоченного множества P – это такая его верхняя грань, которая меньше любой другой его верхней грани. Обозначается символом sup X и читается «супремум X ».
Согласно аксиоме антисимметричности упорядоченного множества, если точная верхняя грань существует, то она единственна.
Понятия нижней грани и точной нижней грани (которая обозначается inf X и читается «инфинум ») определяются двойственно. Также, согласно аксиоме антисимметричности упорядоченного множества, если точная нижняя грань X существует, то она единственна.
называется упорядоченное множество L, в котором любые два элемента x и y имеют точную нижнюю грань, обозначаемую
, и точную верхнюю грань, обозначаемую
.
Примеры решёток:
Примечание. Любая цепь является решёткой, т.к. совпадает с меньшим, а
с большим из элементов
.
Наибольший элемент, то есть элемент, больший или равный каждого элемента упорядоченного множества, обозначают 1, а наименьший элемент, то есть меньший или равный каждого элемента упорядоченного множества, обозначают 0.
На решётке можно рассматривать две бинарные операции:
- сложение и
- произведение
Эти операции обладают следующими свойствами:
1. ,
идемпотентность;
2. ,
коммутативность;
3. ,
ассоциативность;
4. ,
законы поглощения.
ТЕОРЕМА 1.1. Пусть L - множество с двумя бинарными операциями , обладающими свойствами (1) – (4). Тогда отношение
(или
) является порядком на L, а возникающее упорядоченное множество оказывается решёткой, причём:
и
.
Доказательство. Рефлексивность отношения вытекает из свойства (1). Заметим, что оно является следствием свойства (4):
Если и
, то есть
и
, то в силу свойства (2), получим
. Это означает, что отношение
антисимметрично.
Если и
, то применяя свойство (3), получим:
, что доказывает транзитивность отношения
.
Применяя свойства (3), (1), (2), получим:
,
.
Следовательно, и
.
Если и
, то используя свойства (1) – (3), имеем:
, т.е.
.
По определению точней верхней грани убедимся, что .
Из свойств (2), (4) вытекает, что и
.
Если и
, то по свойствам (3), (4) получим:
.
Отсюда по свойствам (2) и (4) следует, что
.
Таким образом, .
Пусть L решётка, тогда её наибольший элемент 1 характеризуется одним из свойств:
1.
.
2.
.
Аналогично характеризуется наименьший элемент :
1.
2.
.
1.3. Дистрибутивные решётки
Решётка L называется дистрибутивной, если для любых выполняется:
D1. .
D2. .
В любой решётке тождества D1 и D2 равносильны. Доказательство этого факта содержится в книге [2], стр. 24.
Примеры дистрибутивных решёток:
-
Множество целых положительных чисел,
означает, что
делит
. Это решётка с операциями НОД и НОК.
-
Любая цепь является дистрибутивной решёткой.
Т ЕОРЕМА 1.2. Решётка L с 0 и 1 является дистрибутивной тогда и только тогда, когда она не содержит подрешёток вида
Доказательство этой теоремы можно найти в книге [1].
1.4. Обобщённо булевы решётки, булевы решётки
Всюду далее под словом «решётка» понимается произвольная дистрибутивная решётка с 0.
Решётка L называется обобщённой булевой, если для любых элементов и d из L, таких что
существует относительное дополнение на интервале
, т.е. такой элемент
из L, что
и
.
(Для ,
, интервал
|
; для
,
можно так же определить полуоткрытый интервал
|
).
ТЕОРЕМА 1.3. (О единственности относительного дополнения в обобщённо булевой решётке). Каждый элемент обобщённо булевой решётки L имеет только одно относительное дополнение на промежутке.
Доказательство. Пусть для элемента существует два относительных дополнения
и
на интервале
. Покажем, что
. Так как
относительное дополнение элемента
на промежутке
, то
и
, так же
относительное дополнение элемента
на промежутке
, то
и
.
Отсюда
,
таким образом , т.е. любой элемент обобщённой булевой решётки имеет на промежутке только одно относительное дополнение.
Решётка L называется булевой, если для любого элемента из L существует дополнение, т.е. такой элемент
из L, что
и
ТЕОРЕМА 1.4. (О единственности дополнения в булевой решётке). Каждый элемент булевой решётки L имеет только одно дополнение.
Доказательство аналогично доказательству теоремы 1.3.
ТЕОРЕМА 1.5. (О связи обобщённо булевых и булевых решёток).
Любая булева решётка является обобщённо булевой, обратное утверждение не верно.
Доказательство. Действительно, рассмотрим произвольную булеву решётку L. Возьмём элементы a и d из L, такие что . Заметим, что относительным дополнением элемента a до элемента d является элемент
, где a’ – дополнение элемента a в булевой решётке L. Действительно,
, кроме того
. Отсюда следует, что решётка L является обобщённо булевой.
1.5. Идеалы
Подрешётка I решётки L называется идеалом, если для любых элементов и
элемент
лежит в I. Идеал I называется собственным, если
. Собственный идеал решётки L называется простым, если из того, что
и
следует
или
.
Так как непустое пересечение любого числа идеалов снова будет идеалом, то мы можем определить идеал, порождённый множеством H в решётке L, предполагая, что H не совпадает с пустым множеством. Идеал, порождённый множеством H будет обозначаться через (H]. Если , то вместо
будем писать
и называть
главным идеалом.
ТЕОРЕМА 1.5. Пусть L – решётка, а H и I – непустые подмножества в L, тогда I является идеалом тогда и только тогда, когда если , то
, и если
, то
.
Доказательство. Пусть I – идеал, тогда влечёт за собой
, так как I – подрешётка. Если
, то
и условия теоремы проверены.
Обратно, пусть I удовлетворяет этим условиям и . Тогда
и так как
, то
, следовательно, I – подрешётка. Наконец, если
и
, то
, значит,
и I является идеалом.
Глава 2
2.1. Конгруэнции
Отношение эквивалентности (т.е. рефлексивное, симметричное и транзитивное бинарное отношение) на решётке L называется конгруэнцией на L, если
и
совместно влекут за собой
и
(свойство стабильности). Простейшими примерами являются ω, ι, определённые так:
(ω)
;
(ι) для всех
.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.