86214 (589944), страница 5

Файл №589944 86214 (Многомерная геометрия) 5 страница86214 (589944) страница 52016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Замечание 1. Согласно этому определению включение является частным случаем параллельности.

Замечание 2. Если Пk параллельна Пl, причём k = l, то Lk совпадает с Ll.

Замечание 3. Убедимся, что при n = 3 частные случаи k = l = 1,

k = l = 2 и k =1, l = 2 согласуются с понятием параллельности прямых и плоскостей, известным из элементарной геометрии (рис. 19)

а) б) в)

Рис. 19

Пусть в произвольной аффинной системе координат две плоскости П и Пl одинаковой размерности заданы системами линейных уравнений. Пользуясь определением параллельности, нетрудно установить следующее утверждение.

Утверждение. Для того, чтобы П и П были параллельными, необходимо и достаточно, чтобы соответствующие однородные системы уравнений были эквивалентны.

В частности, две гиперплоскости параллельны тогда и только тогда, когда в одних и тех же координатах они задаются уравнениями

и (6. 6)

(6. 7)

с пропорциональными коэффициентами при переменных:

.

Теорема 1. Пусть в аффинном пространстве Un даны плоскость Пk и точка В. Тогда существует единственная плоскость размерности k, проходящая через точку В параллельно Пk. Если , то совпадает с Пk; если точка В расположена вне Пk, то плоскости Пk и

не пересекаются.

Скрещивающиеся плоскости

Определение. Две плоскости называются скрещивающимися, если они не пересекаются и не параллельны.

Известно, что в трёхмерном пространстве U3 две прямые линии, т. е. одномерные плоскости, могут скрещиваться, тогда как прямая линия и двумерная плоскость в U3 скрещиваться не могут. С повышением размерности пространства оно становится более просторным, в результате чего появляется возможность строить в нём скрещивающиеся плоскости разных размерностей, а не только одномерные. Ниже сформулирована теорема 2, содержание которой можно рассматривать как общий приём построения скрещивающихся плоскостей. Именно, пусть в аффинном пространстве Un дана плоскость Пl (l < n). Возьмём произвольную плоскость Пk так, чтобы Пk и Пl не были параллельны и пересекались; плоскость, по которой они пересекаются, обозначим через Пm. Пусть Пr - плоскость наименьшей размерности, содержащая Пk и Пl. Мы знаем, что r = k + lm.

Теорема 2. Если , то всякая k-мерная плоскость, которая параллельна Пk и не лежит в Пr, скрещивается с Пl.

Следствие. Если целые числа k, l, m, n удовлетворяют неравенствам

, , , то в Un найдутся скрещивающиеся плоскости Пk и Пl с направляющими подпространствами Lk и Ll, пересечение которых имеет размерность m.

Доказательство теоремы 2. Так как , то плоскость Пr не исчерпывает собой всего пространства Un. Это позволяет взять (с большим произволом) точку С, не лежащую в Пr. Обозначим через плоскость размерности k, проходящую через точку С, параллельно Пk. Ясно, что не содержится в Пr и что, выбирая по-разному точку С, мы можем получить любую k-мерную плоскость, удовлетворяющую условию теоремы. (См. рис. 14, на котором k = l = 2, r = 2, n = 4, и трёхмерные плоскости условно изображены в виде параллелепипеда).

Рис. 20

Докажем, что плоскости Пl и скрещиваются. Заметим, что плоскость не параллельна Пl, так как в противном случае или , или , что противоречит условию расположения плоскостей Пk и Пl.

Теперь докажем, что и Пl не пересекаются. Проведём через точку С вспомогательную r-мерную плоскость , параллельную Пr. Тогда и поэтому Пk не может пересечь Пl ибо в противном случае точка их пересечения принадлежала бы параллельным плоскостям Пr и . Следовательно, скрещивается с Пl. Теорема 2 доказана.

Пусть в n-мерном аффинном пространстве Un даны скрещивающиеся плоскости Пk и Пl с направляющими подпространствами Lk и Ll, причём

, .

Теорема 3. Существует единственная плоскость Пr+1 размерности , содержащая плоскости Пk и Пl.

Доказательство. Возьмём произвольную точку и зафиксируем произвольную точку ; обозначим через линейную оболочку вектора (рис. 16). Допустим, что существует какая-то плоскость

, содержащая Пk и Пl; пусть - её направляющее подпространство. Очевидно, что должно содержать Lk, Ll и , а следовательно, и сумму этих подпространств. Обозначим эту сумму через Lr+1:

Обратно, если - любое подпространство, включающее Lr+1, то

, проходящая через точку А в направлении , будет содержать Пk и Пl. В самом деле, так как и

, то ; так как , то

, так как и , то .

Рис. 21

Получим среди всех плоскостей искомую плоскость Пr+1 минимальной размерности r + 1 в том единственном случае, когда в качестве

берётся Lr+1. Подсчитаем r + 1. С этой целью рассмотрим и обозначим размерность через р. По теореме 3 (в n-мерном пространстве L имеются подпространства Lk и Ll, размерности которых соответственно равны k и l. Если их пересечение имеет размерность m, то размерность их суммы Lk + Ll равна r = k + lm) имеем р = k + lm.

Покажем, что есть прямая сумма, поэтому размерность Lr+1 равна р + 1, то есть (r + 1) = (k + lm) +1.

Для этого достаточно показать, что вектор не принадлежит пространству . Предположим противное. Пусть

. Тогда по определению суммы подпространств существуют векторы х и у такие, что , , . (v) По первой аксиоме аффинного пространства найдётся точка С такая, что , причём . По второй аксиоме аффинного пространства . (vv)

Учитывая (v), (vv), находим, что , так что . Получается, что плоскости Пk и Пl имеют общую точку С, но это невозможно, поскольку плоскости Пk и Пl скрещиваются. Теорема 3 доказана.

Замечание. Рисунок 20 лишь частично иллюстрирует теорему 3. Например, если размерности Пk и Пl больше m и различны между собой, , то, как,

Проведённые выше рассуждения показывают, что плоскости Пk и Пl, о которых идёт речь в теореме 3, не содержатся ни в какой плоскости меньшей размерности, чем r + 1.

Сохраняя обозначения предыдущего подпункта, сформулируем достаточное условие пересечения двух плоскостей.

Теорема 4. Если в Un даны плоскости Пk и Пl, такие, что , где m – размерность пересечения Lm направляющих подпространств Lk и Ll, то Пk и Пl пересекаются.

Доказательство. Исключая тривиальный случай, когда какая-нибудь из данных плоскостей совпадает со всем пространством, имеет

В расположении двух данных плоскостей могут быть лишь три возможности:

либо Пk параллельна Пl;

либо плоскости Пk и Пl скрещиваются;

либо они пересекаются.

Если Пk параллельна Пl, то для размерности m пересечения соответствующих им пространств Lk и Ll имеем m = min (k, l). Теорема доказана.

2. Размерность многообразия k-плоскостей

Найдём размерность Рn,k, многообразия всех k-плоскостей

n-пространства.

Прежде всего заметим, что число параметров, от которых зависят k+1 точек M0, M1, …, Mk n – пространства с линейно независимыми векторами , через которые проходит единственная k-плоскость, равно числу координат, этих точек, т. е. (k +1)n. Далее заметим, что число параметров, от которых зависят те же точки на k-плоскости, равно числу параметров этих точек, т. е. (k +1)k. Так как в n-пространстве, число параметров, от которых зависят точки равно сумме числа Рn,k и числа параметров, от которых зависят точки на k-плоскости, то получим, что

, т. е.

. (6. 7)


§ 7. K-параллелепипеды в пространстве

1. Полуплоскости и параллелепипеды

Если в уравнении

(7. 1)

k-плоскости придавать одному из параметров tb только неотрицательные значения , а остальным параметрам – произвольные действительные значения, мы получим k-полуплоскость, ограничиваемую (k-1)-плоскостью,

(7. 2)

Если в том же уравнении (7. 1) придать всем параметрам только значения , мы получим k-параллелепипед с вершинами

;

2-параллелепипеды называются параллелограммами.

Условимся называть k-параллелепипед с вершинами А0, А1, А2, …, А12…k параллелепипедом А0 А1 А2А12…k.

На рисунке 22 изображён 3-параллелепипед

А0 А1 А2 А3 А12 А13 А123

и параллелограмм А0 А1 А2 А12.

а) б)

Рис. 22

2. Грани параллелепипеда

Придавая в уравнении (7. 1) значения всем параметрам при , а параметру - значения или , мы получим (k - 1)-параллелепипеды, являющиеся гранями k-параллелепипеда. Грани этих (k- 1)-параллелепипедов называются (k - 2)-гранями k-параллелепипеда, грани этих (k–3)-гранями k-параллелепипеда и т. д. Таким образом, k-параллелепипед обладает р – гранями, где р – пробегает значения от 0 до k – 1, 0-грани параллелепипеда совпадают с его вершинами, 1-грани называются рёбрами (при m= 2 - сторонами). На рисунке 22 (а) стороны параллелограмма – четыре отрезка А0 А1, А0 А2, А0 А3, А0 А12, А1 А13, А2 А12, А2 А23, А3 А13, А12 А123, А13 А123, А23 А123; 2-грани - шесть параллелограммов А0 А1 А1 А12, А0 А1 А3 А13, А0 А2 А3 А23, А1 А12 А13 А123, А2 А12 А23 А123, А3 А13 А23 А123.

Число р-граней k-параллелепипеда равно , где - число сочетаний из k по р.

3. Объём прямоугольного параллелепипеда

Характеристики

Тип файла
Документ
Размер
20,11 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6353
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее