86214 (589944), страница 4

Файл №589944 86214 (Многомерная геометрия) 4 страница86214 (589944) страница 42016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Рис. 9

х = 0, у = 0, (ребро АА1)

, у = 0, z = 1 (ребро АB1)

х = 1, , z = 1 (ребро B1А1) и т. д.

Определение. Рёбрами четырёхмерного куба называется множество точек, для которых все координаты, кроме одной, постоянны (равны 0, либо 1), а четвёртая принимает все возможные значения от 0 до 1.

Прежде всего будем различать четыре группы рёбер: для первой пусть переменной координатой является х ( ), а y, z, t принимают постоянные значения 0 и 1 во всех комбинациях. Так как существует 8 различных троек из нуля и единицы. Поэтому рёбер первой группы – 8. Рёбер второй группы, для которых переменной является не х, а у, тоже 8. Таким образом, ясно, что всего у четырёхмерного куба 32 ребра. Кроме рёбер у куба есть грани, которые, в свою очередь разделяются на двумерные и трёхмерные грани четырёхмерного куба. У четырёхмерного куба 24 двумерных грани и 8 – трёхмерных (они изображены параллелепипедами (рис. 10)).

4 - мерный куб Рис. 10

§ 6. Геометрия k-плоскостей в аффинном и евклидовом пространствах

Определение k-плоскости

Пусть в n-мерном аффинном пространстве Un зафиксирована произвольная точка А, и в соответствующем линейном пространстве Ln зафиксировано произвольное k-мерное подпространство Lk.

Определение. Множество всех точек М аффинного пространства, для которых АМ Lk, называют k-мерной плоскостью, проходящей через точку А в направлении подпространством Lk.

Рис. 11, где k = 2

Говорят также, что Lk есть направляющее подпространство этой плоскости. Очевидно, что каждая плоскость определяет однозначно своё направляющее пространство.

Точку М называют текущей точкой плоскости. На рисунке показаны три положения М1, М2, М3 текущей точки М.

Частные случаи k-плоскостей

Если k = 0, то плоскость состоит из одной точки А. Поэтому каждую точку аффинного пространства можно рассматривать как нуль-мерную плоскость.

Одномерная плоскость называется прямой линией.

Плоскость размерности n – 1 называется гиперплоскостью.

При k = n плоскость совпадает со всем пространством Un.

В определении плоскости выделена точка А. Докажем, что в действительности все точки плоскости равноправны.

Обозначим плоскость через Пk и зафиксируем произвольную точку В . Надо доказать, что точка М принадлежит плоскости Пk тогда и только тогда, когда (т. е. что любая точка М может играть роль А).

Пусть . По определению плоскости . Отсюда и по определению подпространства , поэтому . Обратно, если , то следовательно, .

Рис. 12

Теорема. Всякая k-мерная плоскость в аффинном пространстве сама является k-мерным аффинным пространством.

Доказательство. Пусть дано аффинное пространство U, которому соответствует линейное пространство L, пусть Пk – плоскость, проходящая через точку А в направлении подпространства Lk. Возьмём в плоскости Пk две произвольные точки M, N . По определению аффинного пространства им соответствует вектор . По определению плоскости векторы АМ и АN принадлежат подпространству Lk.

Следовательно, . Таким образом, каждой упорядоченной паре точек М, N плоскости Пk, поставим в соответствие вектор MN из k-мерного пространства Lk. При этом соблюдаются для Пk аксиомы, вытекающие из определения k-мерной плоскости и для всего аффинного пространства U. Теорема доказана.

Замечание. Если плоскость проходит через начало аффинной системы координат в направлении подпространства Lk, то совокупность радиус-векторов её точек образует подпространство, по определению совпадающее с подпространством Lk.

Пусть в аффинном пространстве U даны точки А0, А1,…, Аk (в числе k + 1). Эти точки находятся в общем положении, если они не принадлежат ни одной (k –1)-мерной плоскости .

Проверим, что точки А0, А1,…, Аk находятся в общем положении тогда и только тогда, когда векторы А0А1,…, А0Аk линейно независимы (рис. 13), причём безразлично, какую из точек брать в качестве А0 (то есть за начало векторов, идущих из неё в другие точки).

Рис. 13

Из сказанного в этом пункте и из определения плоскости следует, что через систему точек А0, А1,…, Аk, находящихся в общем положении, проходит k-мерная плоскость и притом только одна.

Предположим, что в пространстве Un зафиксирована какая-нибудь аффинная система координат с началом О и базисом е1, е2, …, еn. Рассмотрим плоскость Пk, проходящую через точку А в направлении подпространства Lk.

Будем считать, что точка А имеет координаты р1, р2, …, рn и что Lk задаётся как независимая система векторов q1, q2, …, qk. Тогда радиус-вектор ОМ текущей точки плоскости можно записать в виде

(6. 1)

где параметры τ1, τ2, …, τk независимо друг от друга пробегают всевозможные числовые значения, а вектор (рис. 14)

Рис. 14

Разложим вектор q1, q2, …, qk по базису е1, е2, …, еn:

Координаты текущей точки М обозначим, как обычно, через (x1, x2, …, xn) и запишем векторное равенство в координатах. В результате получим n числовых равенств.

(6. 2)

Эти равенства называются параметрическими уравнениями плоскости Пk.

Пример. Пространство, изучаемое в стереометрии, является трёхмерным аффинным пространством. В нём одномерные и двумерные плоскости совпадают соответственно с прямыми линиями и плоскостями, понимаемыми в элементарно-геометрическом смысле. В отличие от пространства, изучаемого в элементарной геометрии, в аффинном пространстве не определены метрические понятия: расстояния между точками и длины линий, площади и объёмы фигур, углы и перпендикулярность. При исследовании фигур в аффинном пространстве изучаются лишь те геометрические свойства, которые не зависят от метрических понятий.

2. Уравнения k-плоскости по k+1 точкам

Если заданы k+1 точек А0(х0), А1(х1), …, Аn(хn) и векторы А0Аа = ха х0 независимы, то эти точки определяют единственную k – плоскость, проходящую через них: в этом случае за направляющие векторы этой плоскости можно принять векторы А0Аа и векторное уравнение k-плоскости можно записать в виде

(6. 3)

Будем называть k-плоскость, определяемую точками А0(х0), А1(х1), …, Аn(хn), k-плоскостью А0, А1, …, Аk.

Случай k = n-1

В дальнейшем будем часто иметь дело с k-поверхностями и k-плоскостями при k = n – 1. Говоря, «поверхность n-пространства» и «плоскость n-пространства», но иметь в виду (n – 1)-поверхность и (n – 1)-плоскость этого пространства. Часто поверхность и плоскость называется соответственно гиперповерхностью и гиперплоскостью.

Поверхность можно задать одним координатным уравнением

(6. 4)

если координаты xi, удовлетворяющие этому уравнению, можно представить как функции n – 1 параметров t1, t2, …, tn-1, то получим

F(x) = 0. (6. 5)

3. Взаимное расположение плоскостей

3. 1 Пересекающиеся плоскости

Во всём этом пункте размерности плоскостей и подпространств обозначены индексами снизу. Пусть две плоскости Пk и Пl пересекаются, то их пересечением является некоторая плоскость Пm.

k = l = 2, m = 1 Рис. 15

Замечание 1. Не исключена возможность, что Пm состоит из одной точки (m = 0). Это видно на примере двух пересекающихся прямых или прямой и плоскости (рис. 16).

Рис. 16

В общем случае по одной точке могут пересекаться две плоскости, сумма разностей которых не превышает размерности пространства, например, двумерные плоскости в четырёхмерном пространстве.

Замечание 2. Не исключено и другое, когда одна из двух плоскостей целиком принадлежит другой. Например, , тогда (рис. 17)

k = m = 1, l = 2

Рис. 17

2) Если плоскости Пk и Пl пересекаются по плоскости Пm, то существует единственная плоскость Пr, размерности r = k + lm, содержащая Пk и Пl, причём ни в какой плоскости меньшей размерности Пk и Пl не могут одновременно поместиться. Направляющее подпространство Lr плоскости Пr является суммой направляющих подпространств Lk и Ll. Эта сумма является прямой суммой тогда и только тогда, когда Пk и Пl пересекаются по одной точке (m = 0, см. рис. 18).

Рис. 18

В частном случае, когда n = k + lm, роль плоскости Пr выполняет всё пространство Un (при r = n = 3 см. рис. 15).

3) Если пересекающиеся плоскости Пk и Пl содержатся в какой-нибудь плоскости Пr, то размерность их пересечения . В частности, для любых двух непересекающихся плоскостей из Un.

4) Если плоскости Пk и Пl проходят через точку А в направлении подпространств Lk и Ll соответственно и если Lk содержится в Ll, то плоскость Пk содержится в плоскости Пl. Если при этом k = l, то Пk совпадает с Пl (также и Lk совпадает с Ll).

Параллельные плоскости

Пусть теперь плоскость Пk определяется точкой А и подпространством Lk, а плоскость Пl – точкой В и подпространством Ll. Будем считать, что .

Определение: Плоскость Пk параллельна плоскости Пl, если .

В этом случае плоскость Пl параллельна плоскости Пk.

Характеристики

Тип файла
Документ
Размер
20,11 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6510
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее