86214 (589944), страница 4
Текст из файла (страница 4)
Рис. 9
х = 0, у = 0, (ребро АА1)
, у = 0, z = 1 (ребро АB1)
х = 1, , z = 1 (ребро B1А1) и т. д.
Определение. Рёбрами четырёхмерного куба называется множество точек, для которых все координаты, кроме одной, постоянны (равны 0, либо 1), а четвёртая принимает все возможные значения от 0 до 1.
Прежде всего будем различать четыре группы рёбер: для первой пусть переменной координатой является х ( ), а y, z, t принимают постоянные значения 0 и 1 во всех комбинациях. Так как существует 8 различных троек из нуля и единицы. Поэтому рёбер первой группы – 8. Рёбер второй группы, для которых переменной является не х, а у, тоже 8. Таким образом, ясно, что всего у четырёхмерного куба 32 ребра. Кроме рёбер у куба есть грани, которые, в свою очередь разделяются на двумерные и трёхмерные грани четырёхмерного куба. У четырёхмерного куба 24 двумерных грани и 8 – трёхмерных (они изображены параллелепипедами (рис. 10)).
4 - мерный куб Рис. 10
§ 6. Геометрия k-плоскостей в аффинном и евклидовом пространствах
Определение k-плоскости
Пусть в n-мерном аффинном пространстве Un зафиксирована произвольная точка А, и в соответствующем линейном пространстве Ln зафиксировано произвольное k-мерное подпространство Lk.
Определение. Множество всех точек М аффинного пространства, для которых АМ Lk, называют k-мерной плоскостью, проходящей через точку А в направлении подпространством Lk.
Рис. 11, где k = 2
Говорят также, что Lk есть направляющее подпространство этой плоскости. Очевидно, что каждая плоскость определяет однозначно своё направляющее пространство.
Точку М называют текущей точкой плоскости. На рисунке показаны три положения М1, М2, М3 текущей точки М.
Частные случаи k-плоскостей
Если k = 0, то плоскость состоит из одной точки А. Поэтому каждую точку аффинного пространства можно рассматривать как нуль-мерную плоскость.
Одномерная плоскость называется прямой линией.
Плоскость размерности n – 1 называется гиперплоскостью.
При k = n плоскость совпадает со всем пространством Un.
В определении плоскости выделена точка А. Докажем, что в действительности все точки плоскости равноправны.
Обозначим плоскость через Пk и зафиксируем произвольную точку В . Надо доказать, что точка М принадлежит плоскости Пk тогда и только тогда, когда
(т. е. что любая точка М может играть роль А).
Пусть . По определению плоскости
. Отсюда и по определению подпространства
, поэтому
. Обратно, если
, то
следовательно,
.
Рис. 12
Теорема. Всякая k-мерная плоскость в аффинном пространстве сама является k-мерным аффинным пространством.
Доказательство. Пусть дано аффинное пространство U, которому соответствует линейное пространство L, пусть Пk – плоскость, проходящая через точку А в направлении подпространства Lk. Возьмём в плоскости Пk две произвольные точки M, N . По определению аффинного пространства им соответствует вектор . По определению плоскости векторы АМ и АN принадлежат подпространству Lk.
Следовательно, . Таким образом, каждой упорядоченной паре точек М, N плоскости Пk, поставим в соответствие вектор MN из k-мерного пространства Lk. При этом соблюдаются для Пk аксиомы, вытекающие из определения k-мерной плоскости и для всего аффинного пространства U. Теорема доказана.
Замечание. Если плоскость проходит через начало аффинной системы координат в направлении подпространства Lk, то совокупность радиус-векторов её точек образует подпространство, по определению совпадающее с подпространством Lk.
Пусть в аффинном пространстве U даны точки А0, А1,…, Аk (в числе k + 1). Эти точки находятся в общем положении, если они не принадлежат ни одной (k –1)-мерной плоскости .
Проверим, что точки А0, А1,…, Аk находятся в общем положении тогда и только тогда, когда векторы А0А1,…, А0Аk линейно независимы (рис. 13), причём безразлично, какую из точек брать в качестве А0 (то есть за начало векторов, идущих из неё в другие точки).
Рис. 13
Из сказанного в этом пункте и из определения плоскости следует, что через систему точек А0, А1,…, Аk, находящихся в общем положении, проходит k-мерная плоскость и притом только одна.
Предположим, что в пространстве Un зафиксирована какая-нибудь аффинная система координат с началом О и базисом е1, е2, …, еn. Рассмотрим плоскость Пk, проходящую через точку А в направлении подпространства Lk.
Будем считать, что точка А имеет координаты р1, р2, …, рn и что Lk задаётся как независимая система векторов q1, q2, …, qk. Тогда радиус-вектор ОМ текущей точки плоскости можно записать в виде
(6. 1)
где параметры τ1, τ2, …, τk независимо друг от друга пробегают всевозможные числовые значения, а вектор (рис. 14)
Рис. 14
Разложим вектор q1, q2, …, qk по базису е1, е2, …, еn:
Координаты текущей точки М обозначим, как обычно, через (x1, x2, …, xn) и запишем векторное равенство в координатах. В результате получим n числовых равенств.
(6. 2)
Эти равенства называются параметрическими уравнениями плоскости Пk.
Пример. Пространство, изучаемое в стереометрии, является трёхмерным аффинным пространством. В нём одномерные и двумерные плоскости совпадают соответственно с прямыми линиями и плоскостями, понимаемыми в элементарно-геометрическом смысле. В отличие от пространства, изучаемого в элементарной геометрии, в аффинном пространстве не определены метрические понятия: расстояния между точками и длины линий, площади и объёмы фигур, углы и перпендикулярность. При исследовании фигур в аффинном пространстве изучаются лишь те геометрические свойства, которые не зависят от метрических понятий.
2. Уравнения k-плоскости по k+1 точкам
Если заданы k+1 точек А0(х0), А1(х1), …, Аn(хn) и векторы А0Аа = ха – х0 независимы, то эти точки определяют единственную k – плоскость, проходящую через них: в этом случае за направляющие векторы этой плоскости можно принять векторы А0Аа и векторное уравнение k-плоскости можно записать в виде
(6. 3)
Будем называть k-плоскость, определяемую точками А0(х0), А1(х1), …, Аn(хn), k-плоскостью А0, А1, …, Аk.
Случай k = n-1
В дальнейшем будем часто иметь дело с k-поверхностями и k-плоскостями при k = n – 1. Говоря, «поверхность n-пространства» и «плоскость n-пространства», но иметь в виду (n – 1)-поверхность и (n – 1)-плоскость этого пространства. Часто поверхность и плоскость называется соответственно гиперповерхностью и гиперплоскостью.
Поверхность можно задать одним координатным уравнением
(6. 4)
если координаты xi, удовлетворяющие этому уравнению, можно представить как функции n – 1 параметров t1, t2, …, tn-1, то получим
F(x) = 0. (6. 5)
3. Взаимное расположение плоскостей
3. 1 Пересекающиеся плоскости
Во всём этом пункте размерности плоскостей и подпространств обозначены индексами снизу. Пусть две плоскости Пk и Пl пересекаются, то их пересечением является некоторая плоскость Пm.
Замечание 1. Не исключена возможность, что Пm состоит из одной точки (m = 0). Это видно на примере двух пересекающихся прямых или прямой и плоскости (рис. 16).
Рис. 16
В общем случае по одной точке могут пересекаться две плоскости, сумма разностей которых не превышает размерности пространства, например, двумерные плоскости в четырёхмерном пространстве.
Замечание 2. Не исключено и другое, когда одна из двух плоскостей целиком принадлежит другой. Например, , тогда
(рис. 17)
k = m = 1, l = 2
Рис. 17
2) Если плоскости Пk и Пl пересекаются по плоскости Пm, то существует единственная плоскость Пr, размерности r = k + l – m, содержащая Пk и Пl, причём ни в какой плоскости меньшей размерности Пk и Пl не могут одновременно поместиться. Направляющее подпространство Lr плоскости Пr является суммой направляющих подпространств Lk и Ll. Эта сумма является прямой суммой тогда и только тогда, когда Пk и Пl пересекаются по одной точке (m = 0, см. рис. 18).
Рис. 18
В частном случае, когда n = k + l – m, роль плоскости Пr выполняет всё пространство Un (при r = n = 3 см. рис. 15).
3) Если пересекающиеся плоскости Пk и Пl содержатся в какой-нибудь плоскости Пr, то размерность их пересечения . В частности,
для любых двух непересекающихся плоскостей из Un.
4) Если плоскости Пk и Пl проходят через точку А в направлении подпространств Lk и Ll соответственно и если Lk содержится в Ll, то плоскость Пk содержится в плоскости Пl. Если при этом k = l, то Пk совпадает с Пl (также и Lk совпадает с Ll).
Параллельные плоскости
Пусть теперь плоскость Пk определяется точкой А и подпространством Lk, а плоскость Пl – точкой В и подпространством Ll. Будем считать, что .
Определение: Плоскость Пk параллельна плоскости Пl, если .
В этом случае плоскость Пl параллельна плоскости Пk.