Главная » Просмотр файлов » Texts on physics, maths and programming

Texts on physics, maths and programming (562422), страница 24

Файл №562422 Texts on physics, maths and programming (Несколько текстов для зачёта) 24 страницаTexts on physics, maths and programming (562422) страница 242015-12-04СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 24)


(1K)

Fig. 6. The trace is about to hit the axis at x0 and enclose a region. At the time this happens, the whole region including the point x0 is mapped by gt to the same point at.

The opposite is true for κ > 4: points on the real axis are continually colliding with the image at of the tip. This means that the trace is continually touching both itself and the real axis, at the same time engulfing whole regions. Moreover, since it is self-similar object, it does this on all scales, an infinite number of times within any finite neighbourhood! Eventually, the trace swallows the whole half plane: every point is ultimately mapped into at. For κ < 4 only the points on the trace itself suffer this fate. The case κ = 4 is more tricky: in fact the trace is then also a simple curve.

When κ is just above 4, the images of points on the real axis under gt collide with at only when there happen to be rare events when the random force is strong enough to overcome the repulsion. When this happens, whole segments of the real axis are swallowed at one time, corresponding to the picture described above. Conversely, for large κ, the repulsive force is negligible except for very small xt. In that case, two different starting points move with synchronised Brownian motions until the one which started off closer to the origin is swallowed. Thus, the real line is eaten up in a continuous fashion rather than piecemeal. There are no finite regions swallowed by the trace which are not on the trace itself. This means that the trace is space-filling: γ intersects every neighbourhood of every point in the upper half plane. We shall argue later (Section 4.3.1) that the fractal dimension of the trace is df = 1 + κ/8 for κ 8 and 2 for κ 8. Thus, it becomes space-filling for all κ 8.

3.4.2. SLE duality

For κ > 4 the curve continually touches itself and therefore its hull Kt contains earlier portions of the trace (see Fig. 4). However, the frontier of Kt (i.e., the boundary of H Kt, minus any portions of the real axis), is by definition a simple curve. A beautiful result, first suggested by Duplantier [20], and proved by Beffara [21] for the case κ = 6, is that locally this curve is an , with

(21)

For example, the exterior of a percolation cluster contains many ‘fjords’ which, on the lattice, are connected to the main ocean by a neck of water which is only a finite number of lattice spacings wide. These are sufficiently frequent and the fjords macroscopically large that they survive in the continuum limit. SLE6 describes the boundaries of the clusters, including the coastline of all the fjords. However, the coastline as seen from the ocean is a simple curve, which is locally SLE8/3, the same as that conjectured for a self-avoiding walk. This suggests, for example, that locally the frontier of a percolation cluster and a self-avoiding walk are the same in the scaling limit. In Section 5, we show that SLEκ and correspond to CFTs with the same value of the central charge c.

3.5. Special values of κ

3.5.1. Locality

(This subsection and the next are more technical and may be omitted at a first reading). We have defined SLE in terms of curves which connect the origin and infinity in the upper half plane. Property 3.2 then allows us to define it for any pair of boundary points in any simply connected domain, by a conformal mapping. It is interesting to study how the variation of the domain affects the SLE equation. Let A be a simply connected region connected to the real axis which is at some finite distance from the origin (see Fig. 7). Consider a trace γt, with hull Kt, which grows from the origin according to SLE in the domain H A. According to Property 3.2, we can do this by first making a conformal mapping h0 which removes A, and then a map which removes the image . This would be described by SLE in h0 (H A), except that the Loewner ‘time’ would not in general be the same as t. However, another way to think about this is to first use a SLE map gt in H to remove Kt, then another map, call it ht, to remove gt (A). Since both these procedures end up removing Kt A, and all the maps are assumed to be normalised at infinity in the standard way (15), they must be identical, that is (see Fig. 7). If gt maps the growing tip τt to at, then after both mappings it goes to ãt = ht (at). We would like to understand the law of ãt.


(2K)

Fig. 7. An SLE hull in H A and two different ways of removing it: either by first removing A through h0 and then using a Loewner map in the image of H A; or by removing Kt first with gt and then removing the image of A with ht. Since all maps are normalised, this diagram commutes.

Rather than working this out in full generality (see for example [12]), let us suppose that A is a short vertical segment (x, x + i ) with x, and that t = dt is infinitesimal. Then, under gdt, xx + 2dt/x and (1 − 2dt/x2). The map that removes this is (see (16))

(22)

To find ãdt, we need to set in this expression. Carefully expanding this to first order in dt, remembering that (dBt)2 = dt, and also taking the first non-zero contribution in /x, gives after a few lines of algebra

(23)

The factor in front of the stochastic term may be removed by rescaling dt: this restores the correct Loewner time. But there is also a drift term, corresponding to the effect of A. For κ < 6 we see that the SLE is initially repelled from A. From the point of view of the exploration process for the Ising model discussed in Section 2.1.1, this makes sense: if the spins along the positive real axis and on A are fixed to be up, then the spin just above the origin is more likely to be up than down, and so γ is more likely to turn to the left.

For κ = 6, however, this is no longer the case: the presence of A does not affect the initial behaviour of the curve. This is a particular case of the property of locality when κ = 6, which states that, for any A as defined above, the law of Kt in H A is, up to a time reparametrisation, the same as the law of Kt in H, as long as KtA = . That is, up to the time that the curve hits A, it does not know its there. Such a property would be expected for the cluster boundaries of uncorrelated Ising spins on the lattice, i.e., percolation. This is then consistent with the identification of percolation cluster boundaries with SLE6.

3.5.2. Restriction

It is also interesting to work out how the local scale transforms in going from at to ãt. A measure of this is . A similar calculation starting from (22) gives, in the same limit as above

(24)

Now something special happens when κ = 8/3. The drift term in d (h′ (at)) does not then vanish, but if we take the appropriate power it does. This implies that the mean of is conserved. Now at t = 0 it takes the value , where ΦA = h0 is the map that removes A. If Kt hits A at time T it can be seen from (22) that . On the other hand, if it never hits A then . Therefore, gives the probability that the curve γ does not intersect A.

This is a remarkable result in that it depends only on the value of at the starting point of the SLE (assuming of course that ΦA is correctly normalised at infinity). However, it has the following even more interesting consequence. Let . Consider the ensemble of all SLE8/3 in H, and the sub-ensemble consisting of all those curves γ which do not hit A. Then the measure on the image in H is again given by SLE8/3. The way to show this is to realise that the measure on γ is characterised by the probability P (γA′ = ) that γ does not hit A′ for all possible A′. The probability that does not hit A′, given that γ does not hit A, is the ratio of the probabilities and P (γA = ). By the above result, the first factor is the derivative at the origin of the map which removes A then A′, while the second is the derivative of the map which removes A. Thus

(25)

Since this is true for all A′, it follows that the law of given that γ does not intersect A is the same as that of γ. This is called the restriction property. Note that while, according to Property 3.2, the law of an SLE in any simply connected subset of H is determined by the conformal mapping of this subset to H, the restriction property is stronger than this, and it holds only when κ = 8/3.

We expect such a property to hold for the continuum limit of self-avoiding walks, assuming it exists. On the lattice, every walk of the same length is counted with the same weight. That is, the measure is uniform. If we consider the sub-ensemble of such walks which avoid a region A, the measure on the remainder should still be uniform. This will be true if the restriction property holds. This supports the identification of self-avoiding walks with SLE8/3.

3.6. Radial SLE and the winding angle

So far we have discussed a version of SLE that gives a conformally invariant measure on curves which connect two distinct boundary points of a simply connected domain . For this reason it is called chordal SLE. There are variants which describe other situations. For example, one could consider curves γ which connect a given point r1 on the boundary to an interior point r2. The Riemann mapping theorem allows us to map conformally onto another simple connected domain, with r2 being mapped to any preassigned interior point. It is simplest to choose for the standard domain the unit disc U, with r2 being mapped to the origin. So we are considering curves γ which connect a given point eiθ0 on the boundary with the origin. As before, we may consider growing the curve dynamically. Let Kt be the hull of that portion which exists up to time t. Then there exists a conformal mapping gt which takes U Kt to U, such that gt (0) = 0. There is one more free parameter, which corresponds to a global rotation: we use this to impose the condition that is real and positive. One can then show that, as the curve grows, this quantity is monotonically increasing, and we can use this to reparametrise time so that . This normalised mapping then takes the growing tip τt to a point eiθt on the boundary.

Характеристики

Тип файла
Документ
Размер
8,1 Mb
Тип материала
Высшее учебное заведение

Список файлов учебной работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее