Главная » Просмотр файлов » Texts on physics, maths and programming

Texts on physics, maths and programming (562422), страница 25

Файл №562422 Texts on physics, maths and programming (Несколько текстов для зачёта) 25 страницаTexts on physics, maths and programming (562422) страница 252015-12-04СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 25)

Loewner’s theorem tells us that , when expressed as a function of gt (z), should be holomorphic in apart from a simple pole at eiθt. Since gt preserves the unit circle outside should be pure imaginary when |gt (z)| = 1, and in order that , it should approach 1 as gt (z) → 0. The only possibility is

(26)

This is the radial Loewner equation. In fact this is the version considered by Löewner [4].

It can now be argued, as before, that given lk and lk (suitably reworded to cover the case when r2 is an interior point) together with reflection, θt must be proportional to a standard Brownian motion. This defines radial SLE. It is not immediately obvious how the radial and chordal versions are related. However, it can be shown that, if the trace of radial SLE hits the boundary of the unit disc at eiθt1 at time t1, then the law of Kt in radial SLE, for t < t1, is the same chordal SLE conditioned to begin at eiθ(0) and end at eiθt1, up to a reparametrisation of time. This assures us that, in using the chordal and radial versions with the same κ, we are describing the same physical problem.

However, one feature that the trace of radial SLE possesses which chordal SLE does not is the property that it can wind around the origin. The winding angle at time t is simply θtθ0. Therefore, it is normally distributed with variance κt. At this point we can make a connection to the Coulomb gas analysis of the O (n) model in Section 2.4.1, where it was shown that the variance in the winding angle on a cylinder of length L is asymptotically (4/g)L. A semi-infinite cylinder, parametrised by w, is conformally equivalent to the unit disc by the mapping z = ew. Asymptotically, Re w → Re wt under Loewner evolution. Thus, we can identify L t and hence

κ=4/g.

(27)

3.6.1. Identification with lattice models

This result allows use to make a tentative identification with the various realisations of the O (n) model described in Section 2.2. We have, using (27), n = −2 cos(4π/κ) with 2 κ 4 describing the critical point at xc, and 4 < κ 8 corresponding to the dense phase. Some important special cases are therefore:

κ = −2: loop-erased random walks (proven in [24]);

κ = 8/3: self-avoiding walks, as already suggested by the restriction property, Section 3.5.2; unproven, but see [22] for many consequences;

κ = 3: cluster boundaries in the Ising model, however, as yet unproven;

κ = 4: BCSOS model of roughening transition (equivalent to the 4-state Potts model and the double dimer model), as yet unproven; also certain level lines of a gaussian random field and the ‘harmonic explorer’ (proven in [23]); also believed to be dual to the Kosterlitz–Thouless transition in the XY model;

κ = 6: cluster boundaries in percolation (proven in [7]);

κ = 8: dense phase of self-avoiding walks; boundaries of uniform spanning trees (proven in [24]).

It should be noted that no lattice candidates for κ > 8, or for the dual values κ < 2, have been proposed. This possibly has to do with the fact that, for κ > 8, the SLE trace is not reversible: the law on curves from r1 to r2 is not the same as the law obtained by interchanging the points. Evidently, curves in equilibrium lattice models should satisfy reversibility.

4. Calculating with SLE

SLE shows that the measure on the continuum limit of single curves in various lattice models is given in terms of one-dimensional Brownian motion. However, it is not at all clear how thereby to deduce interesting physical consequences. We first describe two relatively simple computations in two-dimensional percolation which can be done using SLE.

4.1. Schramm’s formula

Given a curve γ connecting two points r1 and r2 on the boundary of a domain , what is the probability that it passes to the left of a given interior point? This is not a question which is natural in conventional approaches to critical behaviour, but which is very simply answered within SLE [25].

As usual, we can consider to be the upper half plane, and take r1 = a0 and r2 to be at infinity. The curve is then described by chordal SLE starting at a0. Label the interior point by the complex number ζ.

Denote the probability that γ passes to the left of ζ by (we include the dependence on to emphasise the fact that this is a not a holomorphic function). Consider evolving the SLE for an infinitesimal time dt. The function gdt will map the remainder of γ into its image γ′, which, however, by lk and lk, will have the same measure as SLE started from . At the same time, ζgdt (ζ) = ζ + 2dt/(ζa0). Moreover, γ′ lies to the left of ζ′ iff γ lies to the left of ζ. Therefore

(28)

where the average is over all realisations of Brownian motion dBt up to time dt. Taylor expanding, using dBt = 0 and (dBt)2 = dt, and equating the coefficient of dt to zero gives

(29)

Thus, P satisfies a linear second-order partial differential equation, typical of conditional probabilities in stochastic differential equations.

By scale invariance P in fact depends only on the angle θ subtended between ζa0 and the real axis. Thus, (29) reduces to an ordinary second-order linear differential equation, which is in fact hypergeometric. The boundary conditions are that P = 0 and 1 when θ = π and 0, respectively, which gives (specialising to κ = 6)

(30)

Note that this may also be written in terms of a single quadrature since one solution of (29) is P = const.

4.2. Crossing probability

Given a critical percolation problem inside a simply connected domain , what is the probability that a cluster connects two disjoint segments AB and CD of the boundary? This problem was conjectured to be conformally invariant and (probably) first studied numerically in [26]. A formula based on CFT as well as a certain amount of guesswork was conjectured in [1]. It was proved, for the continuum limit of site percolation on the triangular lattice, by Smirnov [7].

Within SLE, it takes a certain amount of ingenuity [5] to relate this problem to a question about a single curve. As usual, let be the upper half plane. It is always possible to make a fractional linear conformal mapping which takes AB into (−∞, x1) and CD into (0, x2), where x1 < 0 and x2 > 0. Now go back to the lattice picture and consider critical site percolation on the triangular lattice in the upper half plane, so that each site is independently coloured black or white with equal probabilities 1/2. Choose all the boundary sites on the positive real axis to be white, all those on the negative real axis to be black (see Fig. 8). There is a cluster boundary starting at the origin, which, in the continuum limit, will be described by SLE6. Since κ > 4, it repeatedly hits the real axis, both to the L and R of the origin. Eventually every point on the real axis is swallowed. Either x1 is swallowed before x2, or vice versa.


(9K)

Fig. 8. Is there a crossing on the white discs from (0, x2) to (−∞, x1)? This happens if and only if x1 gets swallowed by the SLE before x2.

Note that every site on the L of the curve is black, and every site on its R is white. Suppose that x1 is swallowed before x2. Then, at the moment it is swallowed, there exists a continuous path on the white sites, just to the R of the curve, which connects (0, x2) to the row just above (−∞, x1). On the other hand, if x2 is swallowed before x1, there exists a continuous path on the black sites, just to the L of the curve, connecting 0− to a point on the real axis to the R of x2. This path forms a barrier (as in the game of Hex) to the possibility of a white crossing from (0, x2) to (−∞, x1). Hence there is such a crossing if and only if x1 is swallowed before x2 by the SLE curve.

Recall that in Section 3.4.1 we related the swallowing of a point x0 on the real axis to the vanishing of xt = gt (xt) − at, which undergoes a Bessel process on the real line. Therefore

(31)

Denote this by P (x1, x2). By generalising the SLE to start at a0 rather than 0, we can write a differential equation for this in similar manner to (29)

(32)

Translational invariance implies that we can replace ∂a0 by -(∂x1+∂x2). Finally, P can in fact depend only on the ratio η = (x2a0)/(a0x1), which again reduces the equation to hypergeometric form. The solution is (specialising to κ = 6 for percolation)

(33)

It should be mentioned that this is but one of a number of percolation crossing formulae. Another, conjectured by Watts [27], for the probability that there is cluster which simultaneously connects AB to CD and BC to DA, has since been proved by Dubédat [28]. However, other formulae, for example for the mean number of distinct clusters connecting AB and CD [29], and for the probability that exactly N distinct clusters cross an annulus [30], are as yet unproven using SLE methods.

4.3. Critical exponents from SLE

Many of the critical exponents which have previously been conjectured by Coulomb gas or CFT methods may be derived rigorously using SLE, once the underlying postulates are assumed or proved. However SLE describes the measure on just a single curve, and in the papers of LSW a great deal of ingenuity has gone into showing how to relate this to all the other exponents. There is not space in this article to do these justice. Instead we describe three examples which give the flavour of the arguments, which initially may appear quite unconventional compared with the more traditional approaches.

4.3.1. The fractal dimension of SLE

Характеристики

Тип файла
Документ
Размер
8,1 Mb
Тип материала
Высшее учебное заведение

Список файлов учебной работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6401
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее