Главная » Просмотр файлов » Texts on physics, maths and programming

Texts on physics, maths and programming (562422), страница 26

Файл №562422 Texts on physics, maths and programming (Несколько текстов для зачёта) 26 страницаTexts on physics, maths and programming (562422) страница 262015-12-04СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 26)

The fractal dimension of any geometrical object embedded in the plane can be defined roughly as follows: let N ( ) be the minimum number of small discs of radius required to cover the object. Then if N( ) -df as → 0, df is the fractal dimension.

One way of computing df for a random curve γ in the plane is to ask for the probability P (x, y, ) that a given point ζ = x + iy lies within a distance of γ. A simple scaling argument shows that if P behaves like δf (x, y) as → 0, then δ = 2 − df. We can derive a differential equation for P along the lines of the previous calculation. The only difference is that under the conformal mapping . The differential equation (written for convenience in cartesian coordinates) is

(34)

Now P is dimensionless and therefore should have the form ( /r)2-df times a function of the polar angle θ. In fact, the simple ansatz P= 2-dfyα(x2+y2)β, with α + 2β = df − 2 satisfies the equation. [The reason this works is connected with the simple form for the correlator Φ2 2,1 2,1 discussed in Section 5.4.1.] This gives α = (κ − 8)2/8κ, β = (κ − 8)/2κ, and

df=1+κ/8.

(35)

This is correct for κ 8: otherwise there is another solution with α = β = 0 and df = 2. A more careful statement and proof of this result can be found in [31].

We see that the fractal dimension increases steadily from the value 1 when κ = 0 (corresponding to a straight line) to a maximum value of 2 when κ = 8. Beyond this value γ becomes space-filling: every point in the upper half plane lies on the curve.

4.3.2. Crossing exponent

Consider a critical percolation problem in the upper half plane. What is the asymptotic behaviour as r → ∞ of the probability that the interval (0, 1) on the real axis is connected to the interval (r, ∞)? We expect this to decay as some power of r. The value of this exponent may be found by taking the appropriate limit of the crossing formula (33), but instead we shall compute it directly. In order for there to be a crossing cluster, there must be two cluster boundaries which also cross between the two intervals, and which bound this cluster above and below. Denote the upper boundary by γ. Then we need to know the probability P (r) of there being another spanning curve lying between γ and (1, r), averaged over all realisations of γ. Because of the locality property, the measure on γ is independent of the existence of the lower boundary, and is given by SLE6 conditioned not to hit the real axis along (1, r). Note that because κ > 4 it will eventually hit the real axis at some point to the right of r. For this reason we can do the computation for general κ > 4, although it gives the actual crossing exponent only if κ = 6.

Consider the behaviour of P (r) under the conformal mapping (which maps the growing tip τt into 0). The crossing probability should be conformally invariant and depend only on the ratio of the lengths of the two intervals, hence, by an argument which by now should be familiar

(36)

Expanding this out, remembering as usual that (dBt)2 = dt, and setting to zero the O (dt) term, we find for r 1

(37)

with the solution P (r) r−(κ−4)/κ for κ > 4. Setting κ = 6 then gives the result 1/3.

4.3.3. The one-arm exponent

Consider critical lattice percolation inside some finite region (for example a disc of radius R). What is the probability that a given site (e.g., the origin) is connected to a finite segment S of the boundary? This should decay like Rλ, where λ is sometimes called the one-arm exponent. If we try to formulate this in the continuum, we immediately run up against the problem that all clusters are fractal with dimension <2, and so the probability of any given point being in any given cluster is zero. Instead, one may ask about the probability P (r) that the cluster connected to S gets within a distance r of the origin. This should behave like (r/R)λ. We can now set R = 1 and treat the problem using radial SLE6.

Consider now a radial SLEκ which starts at eiθ0. If κ > 4 it will continually hit the boundary. Let P (θθ0, t) be the probability that the segment (θ0, θ) of the boundary has not been swallowed by time t. Then, by considering the evolution as usual under gdt

P(θ,θ0,t)= P(θ+dθ,θ0+dθ0,t-dt) ,

(38)

where dθ = cot((θθ0)/2) dt and . Setting θ0 = 0 and equating to zero the O (dt) term, we find the time-dependent differential equation

(39)

This has the form of a backwards Fokker–Plank equation.

Now, since , it is reasonable that, after time t, the SLE gets within a distance O (et) of the origin. Therefore, we can interpret P as roughly the probability that the cluster connected to (0, θ) gets within a distance r et of the origin. A more careful argument [32] confirms this. The boundary conditions are P (0, t) = 0 as θ → 0, and (with more difficulty) &#x2202;θP (θ, t) = 0 at θ = 2π. The solution may then be found by inspection to be

P e-λt(sin(θ/4))1-4/κ,

(40)

where λ = (κ2−16)/32κ. For percolation this gives 5/48, in agreement with Coulomb gas arguments [3].

The appearance of differential operators such as that in (39) will become clear from the CFT perspective in Section 5.4.1. If instead of choosing Neuman boundary conditions at θ = 2π we impose P = 0, the same equation gives the bulk two-leg exponent x2, which is also related to the fractal dimension by df = 2− x2.

5. Relation to conformal field theory

5.1. Basics of CFT

The reader who already knows a little about CFT will have recognised the differential equations in Section 4 as being very similar in form to the BPZ equations [33] satisfied by the correlation functions of a 2,1 operator, corresponding to a highest weight representation of the Virasoro algebra with a level 2 null state.

For those readers for whom the above paragraph makes no sense, and in any case to make the argument self-contained, we first introduce the concepts of (boundary) conformal field theory (BCFT). We stress that these are heuristic in nature—they serve only as a guide to formulating the basic principles of CFT which can then be developed into a mathematically consistent theory. For a longer introduction to BCFT see [34] and, for a complete account of CFT [35].

We have at the back of our minds a euclidean field theory defined as a path integral over some set of fundamental fields {ψ (r)}. The partition function is Z = ∫ eS({ψ})[dψ] where the action is an integral over a local lagrangian density. These fields may be thought of as smeared-out continuum versions of the lattice degrees of freedom. As in any field theory, this continuum limit involves renormalisation. There are so-called local scaling operators which are particular functionals of the fundamental degrees of freedom, which have the property that we can define renormalised scaling operators whose correlators are finite in the continuum limit a → 0, that is

(41)

exists. The numbers xj are called the scaling dimensions, and are related to the various critical exponents. They are related to the conformal weights by ; the difference is called the spin of j, and describes its behaviour under rotations. There are also boundary operators, localised on the boundary, which have only a single conformal weight equal to their scaling dimension.

The theory is developed independently of any particular set of fundamental fields or lagrangian. An important role in this is played by the stress tensor Tμν (r), defined as the local response of the action to a change in the metric:

(42)

Invariance under local rotations and scale transformations usually implies that Tμν is symmetric and traceless: . This also implies invariance under conformal transformations, corresponding to δgμν f (r)gμν.

In two-dimensional flat space, infinitesimal coordinate transformations rμrμ=rμ+αμ(r) correspond to infinitesimal transformations of the metric with δgμν = −(∂μαμ + ∂ναν). It is important to realise that under these transformations the underlying lattice, or UV cut-off, is not transformed. Otherwise they would amount to a trivial reparametrisation. For a conformal transformation, αμ (r) is given by an analytic function: in complex coordinates , , so α zα (z) is holomorphic. However, such a function cannot be small everywhere (unless it is constant), so it is necessary to consider coordinate transformations which are not everywhere conformal.

Характеристики

Тип файла
Документ
Размер
8,1 Mb
Тип материала
Высшее учебное заведение

Список файлов учебной работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее