Главная » Просмотр файлов » Texts on physics, maths and programming

Texts on physics, maths and programming (562422), страница 21

Файл №562422 Texts on physics, maths and programming (Несколько текстов для зачёта) 21 страницаTexts on physics, maths and programming (562422) страница 212015-12-04СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 21)


(8K)

Fig. 1. Ising model on the honeycomb lattice, with loops corresponding to a term in the expansion of (1). Alternatively, these may be thought of as domain walls of an Ising model on the dual triangular lattice.

At high temperatures (βJ 1) the spins are disordered, and their correlations decay exponentially fast, while at low temperatures (βJ 1) there is long-range order: if the spins on the boundary are fixed say, to the value +1, then s (r) ≠ 0 even in the infinite volume limit. In between, there is a critical point. The conventional approach to the Ising model focuses on the behaviour of the correlation functions of the spins. In the scaling limit, they become local operators in a quantum field theory (QFT). Their correlations are power-law behaved at the critical point, which corresponds to a massless QFT, that is a conformal field theory (CFT). From this point of view (as well as exact lattice calculations) it is found that correlation functions like s (r1)s (r2) decay at large separations according to power laws |r1r2|−2x: one of the aims of the theory is to obtain the values of the exponents x as well as to compute, for example, correlators depending on more than two points.

However, there is an alternative way of thinking about the partition function (1), as follows: imagine expanding out the product to obtain 2N terms, where N is the total number of edges. Each term may be represented by a subset of edges, or graph , on the lattice, in which, if the term xs (r)s (r′) is chosen, the corresponding edge (rr′) is included in , otherwise it is not. Each site r has either 0, 1, 2, or 3 edges in . The trace over s (r) gives 1 if this number is even, and 0 if it is odd. Each surviving graph is then the union of non-intersecting closed loops (see Fig. 1). In addition, there can be open paths beginning and ending at a boundary. For the time being, we suppress these by imposing ‘free’ boundary conditions, summing over the spins on the boundary. The partition function is then

(2)

where the length is the total of all the loops in . When x is small, the mean length of a single loop is small. The critical point xc is signalled by a divergence of this quantity. The low-temperature phase corresponds to x > xc. While in this phase the Ising spins are ordered, and their connected correlation functions decay exponentially, the loop gas is in fact still critical, in that, for example, the probability that two points lie on the same loop has a power-law dependence on their separation. This is the dense phase.

The loops in may be viewed in another way: as domain walls for another Ising model on the dual lattice, which is a triangular lattice whose sites R lie at the centres of the hexagons of the honeycomb lattice (see Fig. 1). If the corresponding interaction strength of this dual Ising model is (βJ) , then the Boltzmann weight for creating a segment of domain wall is e−2(βJ) . This should be equated to x = tanh (βJ) above. Thus, we see that the high-temperature regime of the dual model corresponds to low temperature in the original model, and vice versa. Infinite temperature in the dual model ((βJ) = 0) means that the dual Ising spins are independent random variables. If we colour each dual site with s (R) = +1 black, and white if s (R) = −1, we have the problem of site percolation on the triangular lattice, critical because for that problem. Thus, the curves with x = 1 correspond to percolation cluster boundaries. (In fact in the scaling limit this is believed to be true throughout the dense phase x > xc.)

So far we have discussed only closed loops. Consider the spin–spin correlation function

(3)

where the sites r1 and r2 lie on the boundary. Expanding out as before, we see that the surviving graphs in the numerator each have a single edge coming into r1 and r2. There is therefore a single open path γ connecting these points on the boundary (which does not intersect itself nor any of the closed loops). In terms of the dual variables, such a single open curve may be realised by specifying the spins s (R) on all the dual sites on the boundary to be +1 on the part of the boundary between r1 and r2 (going clockwise) and −1 on the remainder. There is then a single domain wall connecting r1 to r2. SLE describes the continuum limit of such a curve γ.

Note that we could also choose r2 to lie in the interior. The continuum limit of such curves is then described by radial SLE (Section 3.6).

2.1.1. Exploration process

An important property of the ensemble of curves γ on the lattice is that, instead of generating a configuration of all the s (R) and then identifying the curve, it may be constructed step-by-step as follows (see Fig. 2). Starting from r1, at the next step it should turn R or L according to whether the spin in front of it is +1 or −1. For independent percolation, the probability of either event is 1/2, but for x < 1 it depends on the values of the spins on the boundary. Proceeding like this, the curve will grow, with all the dual sites on its immediate left taking the value +1, and those its right the value −1. The relative probabilities of the path turning R or L at a given step depend on the expectation value of the spin on the site R immediately in front of it, given the values of the spins already determined, that is, given the path up to that point. Thus, the relative probabilities that the path turns R or L are completely determined by the domain and the path up to that point. This implies the crucial.

Property 2.1 Lattice version

Let γ1 be the part of the total path covered after a certain number of steps. Then the conditional probability distribution of the remaining part of the curve, given γ1, is the same as the unconditional distribution of a whole curve, starting at the tip and ending at r2 in the domain .


(8K)

Fig. 2. The exploration process for the Ising model. At each step the walk turns L or R according to the value of the spin in front of it. The relative probabilities are determined by the expectation value of this spin given the fixed spins either side of the walk up to this time. The walk never crosses itself and never gets trapped.

In the Ising model, for example, if we already know part of the domain wall, the rest of it can be considered as a complete domain wall in a new region in which the left and right sides of the existing part form part of the boundary. This means the path is a history-dependent random walk. It can be seen (Fig. 2) that when the growing tip τ approaches an earlier section of the path, it must always turn away from it: the tip never gets trapped. There is always at least one path on the lattice from the tip τ to the final point r2.

2.2. O (n) model

The loop gas picture of the Ising and percolation models may simply be generalised by counting each closed loop with a fugacity n

(4)

This is called the O (n) model, for the reason that it gives the partition function for n-component spins s (r) = (s1 (r), … , sn (r)) with

(5)

where Tr sa (r) sb (r) = δab. Following the same procedure as before we obtain the same set of closed loops (and open paths) except that, on summing over the last spin in each closed loop, we get a factor n. The model is called O (n) because of its symmetry under rotations of the spins. The version (5) makes sense only when n is a positive integer (and note that the form of the partition function is different from that of the conventional O (n) model, where the second term is exponentiated). The form in (4) is valid for general values of n, and it gives a probability measure on the loop gas for real n 0. However, the dual picture is useful only for n = 1 and n = 2 (see below). As for the case n = 1, there is a critical value xc (n) at which the mean loop length diverges. Beyond this, there is a dense phase.

Apart from n = 1, other important physical values of n are:

n = 2. In this case we can view each loop as being oriented in either a clockwise or anti-clockwise sense, giving it an overall weight 2. Each loop configuration then corresponds to a configuration of integer valued height variables h (R) on the dual lattice, with the convention that the nearest neighbour difference h (R′) − h (R) takes the values 0, +1 or −1 according to whether the edge crossed by RR′ is unoccupied, occupied by an edge oriented at 90° to RR′, or at −90°. (That is, the current running around each loop is the lattice curl of h.) The variables h (R) may be pictured as the local height of a crystal surface. In the low-temperature phase (small x) the surface is smooth: fluctuations of the height differences decay exponentially with separation. In the high-temperature phase it is rough: they grow logarithmically. In between is a roughening transition. It is believed that relaxing the above restriction on the height difference h (R′) − h (R) does not change the universality class, as long as large values of this difference are suppressed, for example using the weighting exp [−β (h (R′) − h (R))2]. This is the discrete Gaussian model. It is dual to a model of two-component spins with O (2) symmetry called the XY model.

n = 0. In this case, closed loops are completely suppressed, and we have a single non-self-intersecting path connecting r1 and r2, weighted by its length. Thus, all paths of the same length are counted with equal weight. This is the self-avoiding walk problem, which is supposed to describe the behaviour of long flexible polymer chains. As xxc-, the mean length diverges. The region x > xc is the dense phase, corresponding to a long polymer whose length is of the order of the area of the box, so that it has finite density.

Характеристики

Тип файла
Документ
Размер
8,1 Mb
Тип материала
Высшее учебное заведение

Список файлов учебной работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее