Главная » Просмотр файлов » Texts on physics, maths and programming

Texts on physics, maths and programming (562422), страница 19

Файл №562422 Texts on physics, maths and programming (Несколько текстов для зачёта) 19 страницаTexts on physics, maths and programming (562422) страница 192015-12-04СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 19)

6. Spacetime algebra and Dirac theory

Just as it is possible to describe geometric algebra as a fermionic deformed superanalysis it is also possible to describe spacetime algebra in this context. The basis vectors of space-time are the Grassmann elements γ0, γ1, γ2, and γ3, which fulfill

(6.1)

where we choose here gμν = diag(1, −1, −1, −1). The corresponding Clifford star product in space-time is

(6.2)

A general supernumber in space-time has the form

A=a0+aμγμ+aμνγμγν+aμνργμγνγρ+a4I4,

(6.3)

where I4 = γ0γ1γ2γ3 and only linearly independent terms should appear. With the four-dimensional pseudoscalar I4 and the Clifford star product (6.2) it is possible to construct analogously to (3.36) the dual basis γμ, which gives γ0 = γ0 and γi = −γi. Furthermore one can define in analogy to the three-dimensional case a trace:

(6.4)

The Berezin integral acts here again like a projector on the scalar part of F. The definition of the trace by projecting on the scalar part was already given in [19] and it was also stated that the use of geometric algebra greatly simplifys all the trace calculations usually done in the matrix formalism. An explicit expression for the trace can now in the formalism of deformed superanalysis be given by the Berezin integral.

The question is now how a spacetime vector x=xμγμ is related to its space vector part x=xiσi. In the γ0-system this can be seen by a space-time split which amounts to star-multiplying by γ0:

x Cγ0=x·γ0+0=t+x.

(6.5)

One should note that x=xγ0=x1γ1γ0+x2γ2γ0+x3γ3γ0 is a spacetime bivector, but on the other hand it is also a space vector because the two-blades γiγ0 behave like σi:

(6.6)

where the four-dimensional star product (6.2) and the three-dimensional star product (3.14) is used in (6.6), as should be clear from the context. The square of the position four vector is x2 C=t2-x2 C.

If a particle is moving in the γ0-system along x (τ), where τ is the proper time, the proper velocity is given by , with u2 C=1. For the space-time split of the proper velocity one obtains:

(6.7)

Comparing the scalar and the bivector part leads to

(6.8)

and with one gets [3]

(6.9)

It is now also possible to specify a Lorentz transformation from a coordinate system γμ to a coordinate system moving in the γ1-direction. For the coefficients this transformation is given by t = γ (t + βx′1), x1 = γ (x′1 + βt), x2 = x2, and x3 = x′3. The condition leads then to

(6.10)

Introducing the angle α so that β = tanh (α) this can be written as

(6.11)

or with as . In general the generators of a passive Lorentz transformation can be calculated with

(6.12)

so that the generators for the boosts and the rotations are

(6.13)

These generators satisfy

(6.14)

and a passive Lorentz transformation is given by

(6.15)

which is a generalization of (6.11).

The Dirac equation can then be written down immediately as [7]

(6.16)

where no slash notation is needed, because one naturally has p=pμγμ. The Wigner function for the Dirac equation is the functional analog of the well-known energy projector of Dirac theory:

(6.17)

Besides the energy one also has the spin as an observable, which is here given by

(6.18)

where s=sμγμ is a vector which fulfills s2 C=-1 and s · p = 0. γ5 is here γ5 = iI4. With and [Ss,p m] C=0 one sees that the spin Wigner function is given by the functional analog of the spin projector in Dirac theory

(6.19)

and fulfills . The total Wigner function is then the Clifford star product of the two single Wigner functions.

7. Conclusions

There are two formal and conceptual barriers that separate quantum theory from classical theory. The first barrier is that classical theory is described on the phase space while quantum theory is described on the Hilbert space. This conceptual barrier is overcome by the program of deformation quantization that describes quantum theory on the phase space. The second barrier is that one uses in classical mechanics the Gibbs–Heaviside formalism, which cannot take spin into account. In quantum theory where spin is a physical observable it is described in the non-relativistic case by the “Feynman trick”, which substitutes by and in the relativistic case it is introduced by writing pμγμ. Both notations clearly indicate that the σi and the γμ are basis vectors, but this is obscured by representing them by matrices. The work of Hestenes has clarified this point by formulating classical and quantum theory in the same formalism of geometric algebra. The surprising thing is now that also this second barrier can be overcome in terms of the star product formalism, so that classical and quantum theory can be unified on a formal level. Both can be described by the formalism of deformed superanalysis, where classical mechanics is a “half-deformed” formalism, that means the deformation only takes place in the Grassmann sector of superanalysis, while quantum mechanics leads to a “totally deformed” formalism, where also the product of the scalar coefficients are deformed. This shows on a formal level that quantum theory is more fundamental than classical theory.

The star product formalism has also advantages in the context of geometric calculus, because it gives an explicit expression for the geometric product. Geometric algebra, in the way Hestenes constructed it, is formulated with respect to the scalar and the wedge product, which represent the lowest and the highest order terms of the geometric product. All other terms of the geometric product are then formulated with the help of these two products. This approach is very practical, especially if one has only terms that are at most bivectors. But in the general case the highest and the lowest terms of an expansion have on a formal level the same status as all other terms. The star product gives now all these terms of different grade as terms of an expansion, that can be calculated in a straightforward fashion.

SLE for theoretical physicists

John Cardy ,

Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
All Souls College, Oxford, UK

Received 14 March 2005; accepted 4 April 2005. Available online 12 May 2005.


Abstract

This article provides an introduction to Schramm (stochastic)–Loewner evolution (SLE) and to its connection with conformal field theory, from the point of view of its application to two-dimensional critical behaviour. The emphasis is on the conceptual ideas rather than rigorous proofs.

Article Outline

1. Introduction

1.1. Historical overview

1.2. Aims of this article

2. Random curves and lattice models

2.1. The Ising and percolation models

2.1.1. Exploration process

2.2. O (n) model

2.3. Potts model

2.4. Coulomb gas methods

2.4.1. Winding angle distribution

2.4.2. N-leg exponent

3. SLE

3.1. The postulates of SLE

3.2. Loewner’s equation

3.3. Schramm–Loewner evolution

3.4. Simple properties of SLE

3.4.1. Phases of SLE

3.4.2. SLE duality

3.5. Special values of κ

3.5.1. Locality

3.5.2. Restriction

3.6. Radial SLE and the winding angle

3.6.1. Identification with lattice models

4. Calculating with SLE

4.1. Schramm’s formula

4.2. Crossing probability

Характеристики

Тип файла
Документ
Размер
8,1 Mb
Тип материала
Высшее учебное заведение

Список файлов учебной работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее