Главная » Просмотр файлов » Texts on physics, maths and programming

Texts on physics, maths and programming (562422), страница 17

Файл №562422 Texts on physics, maths and programming (Несколько текстов для зачёта) 17 страницаTexts on physics, maths and programming (562422) страница 172015-12-04СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 17)

Just as in the two-dimensional case one can also consider in three dimensions the role of spinors and rotations. To this purpose one first considers a vector transformation of the form

xx=-u Cx Cu,

(3.26)

where u is a three-dimensional unit vector: u = u1σ1 + u2σ2 + u3σ3 with . This transformation can be identified as a reflection in a plane orthogonal to u if one decomposes x into a part collinear to u and a part orthogonal to u:

x=x +x =(x·u+xu) Cu,

(3.27)

with x = (x · u) u and x = (xu) Cu = (xu) · u. One can easily check that

(3.28)

This decomposition of x can most easily be obtained if one just star-divides x Cu = x · u + x u by u, which gives with u-1 C=u:

x=(x·u) Cu-1 C+(xu) Cu-1 C=(x·u)u+(xu) Cu=x +x .

(3.29)

Using (3.28) one sees that the transformation (3.26) turns x into x=-u Cx Cu=-x +x , so that only the component collinear to u is inverted, which amounts to a reflection at the plane where u is the normal vector. Two successive transformations (3.26) lead to:

(3.30)

where U can be written as:

(3.31)

where the angle between the unit vectors u and v is described by an bivector A = v u = vu = |vu|A0. Hereby the unit bivector A0 = vu/|vu| defines the plane in which the angle lies, while the magnitude |vu| gives the angle in radians, furthermore it fulfills A0 CA0 = −1. If one chooses for example the basis vectors σk for u and v, A0 would be given by one of the bivectors in (3.21). The additional factor 1/2 in (3.31) will become clear if one investigates the action of the transformation (3.30). To this purpose one proceeds analogously to the discussion of the reflection (3.26). One first decomposes the vector x into a part x in the plane defined by A and a part x perpendicular to that plane. This is done analogously to (3.29) by star-dividing x CA = x · A + x A by A which leads to

x=(x·A) CA-1 C+(xA) CA-1 C=x +x ,

(3.32)

with x C A = −A Cx and x CA = A Cx . We then have for the transformation (3.30):

(3.33)

So the component perpendicular to the plane defined by A is not changed while the component in this plane is rotated with the help of the spinor by an angle of magnitude |A|, just as described in the two-dimensional case above. One sees here why the rotation in the two-dimensional case could be written just by acting with a spinor from the right. This is due to the fact that when the vector lies in the plane of rotation one has

(3.34)

A rotation can be described with the bivector A, but also with the dual vector a defined by A = I3 Ca, where the direction of a defines the axis of rotation, while the magnitude gives the radian |a| = |A|. So U can also be written as:

(3.35)

which corresponds to the star exponential (2.24).

The formalism described so far can easily be generalized to the case of d euclidian dimensions. Just as there is a duality in the space spanned by the σi there is also the duality between the spaces spanned by the σi and the σi. This duality is expressed by the relation . The σi-vectors can be constructed with the help of the pseudoscalar, which is for the d-dimensional euclidian case Id = σ1σ2 σd. The hyperplane for which the basis vector σj is normal is given for an d-dimensional euclidian space by the (d−1)-blade , where means that this basis vector is missing. The corresponding dual vector is then given by

(3.36)

where is the inverse d-dimensional pseudoscalar.

Note also that the multiple Clifford star product leads to an expansion of Wick type. For example, the Clifford product of four basis vectors is given by

σi1 Cσi2 Cσi3 Cσi4=σi1σi2σi3σi4+σi1σi2δi3i4-σi1σi3δi2i4+σi1σi4δi2i3+σi2σi3δi1i4-σi2σi4δi1i3+σi3σi4δi1i2+δi1i2δi3i4-δi1i3δi2i4+δi1i4δi2i3,

(3.37)

where the contraction of σi and σj is given by δij. This suggests to use the star product formalism also in the realm of quantum field theory [10].

4. Geometric algebra and classical mechanics

It is now straightforward to use the formalism described so far in classical mechanics as was done in [3]. We will here only give two examples to show where the advantages of geometric algebra lie. Let us first consider the three-dimensional harmonic oscillator, which is defined by the differential equation , where q is now a supernumber: q = q1σ1 + q2σ2 + q3σ3. The ansatz leads to the equation , which is solved by λ = ± iω0 with . The difference to the conventional formalism is that i is here a bivector with . This gives then the two solutions

(4.1)

In the second term appears the expression a± Ci = a±i + a± · i, which is the sum of a term of Grassmann grade three and a term of Grassmann grade one. But the result q± itself is a quantity of Grassmann grade one, so it follows that a±i = 0, which is the defining equation of the plane in which the oscillatory movement takes place. This plane is defined by the unit bivector i and has to be determined by the initial conditions [3].

As the second example we consider the solution of the Kepler problem by spinors [11]. One uses here the fact that the radial position vector r = r1σ1 + r2σ2 + r3σ3 can be written as a rotated and dilated basis vector:

(4.2)

The components ri of r can then be expressed in terms of the components ui of U = u1 + u2σ2σ3 + u3σ3 σ1 + u4σ1σ2:

(4.3)

which is the well-known Kustaanheimo–Stiefel transformation [12] and [13]. Comparing Figs. (4.2) and (4.3) leads to the notational correspondence

(4.4)

where and are four-dimensional space vectors considered as tupels of numbers as in the conventional formalism. One should note here that the KS-transformation increases the degrees of freedom by one, which means that the bivector U in (4.2) is not unique [11]. This gauge freedom can be reduced by imposing an additional constraint on U as will be shown below. Squaring (4.4) leads to the relations

(4.5)

with . Differentiating (4.4) with respect to t one obtains the KS-transformation for the velocities as

(4.6)

One can then choose for the constraint

(4.7)

which means that the superfluous fourth component r4 stays zero for all times. With this constraint it is possible to invert the geometric algebra relation (4.6) for U. Implementing Figs. (4.7) and (4.6) gives , which can be solved for , so that the inverse relation to (4.6) is

(4.8)

By introducing a fictitious time s which is defined as

(4.9)

it is then possible to regularize the divergent 1/r-potential so that (4.8) reads or

(4.10)

Substituting now the inverse square force

(4.11)

one obtains:

(4.12)

which is the equation of motion for an harmonic oscillator. This equation can be solved in a straightforward fashion and is much easier than the equation for r. The orbit can then be calculated by (4.2).

The Kepler problem can also be treated in the canonical formalism. For this purpose one first needs the KS-transformation for the momentum. If is the canonical momentum corresponding to the KS-transformation is given by

(4.13)

with W = w1 + w2σ2σ3 + w3σ3σ1 + w4σ1σ2. For one gets with (4.13)

(4.14)

where and

(4.15)

Equation (4.14) allows to transform the Hamiltonian into ui- and wi-coordinates. This is done in several steps [13]. Starting from the Hamiltonian one first extends the phase space by a q0- and a p0-coordinate and forms the homogenous Hamiltonian as H1 = H + p0. This leads for the zero component to two additional Hamilton equations

(4.16)

which shows that q0 corresponds to the time t and p0 is a constant and corresponds to the negative energy of the system, so that H1 = H + p0 = 0 for a conservative force. Since the time is now a coordinate the development of the system has to be described with a different parameter. This development parameter is the fictitious time s that is connected to the time by (4.9). The relation (4.9) can be implemented if one chooses H2 = rH1. The Hamilton equations that describe then the development according to s are differential equations with respect to s:

(4.17)

Especially for the zero component one gets

which corresponds to (4.9). After having so far regularized the Hamiltonian one can then go over to KS-coordinates and obtains with (4.14)

(4.18)

Imposing now the constraint p4 = 0, which for in (4.15) is just (4.7), and considering bound states with E < 0 the Hamiltonian is given by

(4.19)

which describes a four-dimensional harmonic oscillator with fixed energy and frequency ω = (|E|/2m)1/2.

Характеристики

Тип файла
Документ
Размер
8,1 Mb
Тип материала
Высшее учебное заведение

Список файлов учебной работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее