Глава 2. doc (559877), страница 3
Текст из файла (страница 3)
Кислотные дожди известны более 100 лет, однако проблема этих дождей возникла около 25 лет назад.
Источниками кислотных дождей служат газы, содержащие серу и азот. Наиболее важные из них: SO2, NO*, H2S. Кислотные дожди возникают вследствие неравномерного распределения этих газов в атмосфере. Например, концентрация SO2 (мкг/м3) обычно такова: в городе 50... 1000, на территории около города в радиусе около 50 км 10...50, в радиусе около 150 км 0,1...2, над океаном 0,1.
Основными реакциями в атмосфере являются: I вариант: SO2 + OH-> HSO3; HSO3 + ОН -> H2SO4 (молекулы в атмосфере быстро конденсируются в капли); II вариант: SO2 + /zv -» SO*2(SO*2— активированная молекула диоксида серы); SO2 + О2 -> SO4; SO4 + + О2 -> SO3 + O3; SO3 + H2O -> H2SO4. Реакции обоих вариантов в атмосфере идут одновременно. Для сероводорода характерна реакция H2S + О2 -» SO2 + Н2О и далее I или II вариант реакции.
инеральных кислот, органиче
Источниками поступления соединений серы в атмосферу являются: естественные (вулканическая деятельность, действия микроорганизмов и др.) 31...41 %, антропогенные (ТЭС, промышленность и др.) 59...69 %; всего поступает 91...112 млн т в год.
Концентрации соединений азота (мкг/м3) составляют: в городе 10... 100, на территории около города в радиусе 50 км 0,25...2,5, над океаном 0,25.
Из соединений азота основную долю кислотных дождей дают NO и NO2. В атмосфере возникают реакции: 2NO + О2 -> 2NO2, NO2 + ОН —> HNO3. Источниками соединений азота являются: естественные (почвенная эмиссия, грозовые разряды, горение биомассы и др.) 63 %, антропогенные (ТЭС, автотранспорт, промышленность) 37 %; всего поступает 51...61 млн т в год.
Серная и азотная кислоты поступают в атмосферу также в виде тумана и паров от промышленных предприятий и автотранспорта. В городах их концентрация достигает 2 мкг/м3.
Соединения серы и азота, попавшие в атмосферу, вступают в химическую реакцию не сразу, сохраняя свои свойства соответственно в течение 2 и 8... 10 сут. За это время они могут вместе с атмосферным воздухом пройти расстояния 1000...2000 км и лишь после этого выпадают с осадками на земную поверхность.
Различают два вида седментации: влажную и сухую. Влажная — это выпадение кислот, растворенных в капельной влаге, она возникает при влажности воздуха 100,5 %; сухая реализуется в тех случаях, когда кислоты присутствуют в атмосфере в виде капель диаметром около 0,1 мкм. Скорость седиментации в этом случае весьма мала и капли могут проходить большие расстояния (следы серной кислоты обнаружены даже на Северном полюсе).
В нашей стране повышенная кислотность осадков (рН = 4...5,5) отмечается в отдельных промышленных регионах. Наиболее неблагополучны города Тюмень, Тамбов, Архангельск, Северодвинск, Вологда, Петрозаводск, Омск и др. Плотность выпадения осадков серы, превышающая 4 т/(км2 • год), зарегистрирована в 22 городах страны, а более 8...12 т/(км2 • год) в городах Алексин, Новомосковск, Норильск, Магнитогорск.
Парниковый эффект. Состояние и состав атмосферы определяют во многом величину солнечной радиации в тепловом балансе Земли. На ее долю приходится основная часть поступающей в биосферу теплоты, дж/год: теплота от солнечной радиации составляет 25 ■ 1023(99,8 %), теплота от естественных источников (из недр Земли,
от животных и др.) —37,46 • 1020(0,18 %), теплота от антропогенных источников (энергоустановок, пожаров и др.) — 4,2 • 1020(0,02 %).
Экранирующая роль атмосферы в процессах передачи теплоты от Солнца к Земле и от Земли в космос влияет на среднюю температуру биосферы, которая длительное время находилась на уровне около + 15°С. Расчеты показывают, что при отсутствии атмосферы средняя температура поверхности Земли составляла бы приблизительно - 15°С.
Основная доля солнечной радиации передается к поверхности Земли в оптическом диапазоне, а излучаемая поверхностью Земли энергия — в инфракрасном (ИК). Поэтому доля отраженной лучистой энергии, поглощаемой атмосферой, зависит от количества многоатомных минигазов (СО2, Н2О, СН4, О3 и др.) и пыли в ее составе. Чем выше концентрация минигазов и пыли в атмосфере, тем меньше доля отраженной солнечной радиации уходит в космическое пространство, тем больше теплоты задерживается в биосфере за счет парникового эффекта. ИК-излучение поглощается метаном, фреона-ми, озоном, оксидом азота и т. п. в диапазоне длины волн 1...9мкм,а парами воды и углекислым газом при длине волн 12 мкм и более. В последние годы наметилась тенденция к значительному росту концентраций СО2, СН4, N2O и других газов в атмосфере. Так, рост концентраций СО2 в атмосфере выглядит следующим образом:
Год 1850 1900 1970 1979 1990 2000 2030 2050
Концентрация СО2, млн"1 260 290 321 335 360 380 450 600 700 .750
Аналогично изменяются концентрации метана, оксида азота, озона и других газов. Рост концентраций СО2 в атмосфере происходит вследствие уменьшения растительности на Земле и увеличения техногенных поступлений.
Источниками техногенных парниковых газов являются: теплоэнергетика, промышленность и автотранспорт, они выделяют СО2; химические производства, утечки из трубопроводов, гниение мусора и отходов животноводства определяют поступление СН4; холодильное оборудование, бытовая химия — фреонов; автотранспорт, ТЭС, промышленность — оксидов азота и т. п.
В результате в биосферу дополнительно поступает теплота порядка 70 • 1020 Дж/год, при этом на долю отдельных газов приходится, %: СО2 —50, фреонов —15, О3 —5, СН4 —20, N2O2 —10. Доля парникового эффекта в нагреве биосферы в 16,6 раза больше доли других источников антропогенного поступления теплоты.
Рост концентраций минигазов в атмосфере и, как следствие, повышение доли теплоты ИК-излучения, задерживаемой атмосферой, неизбежно сопровождается ростом температуры поверхности Земли. В период с 1880 по 1940 г. средняя температура в северном полушарии возросла на 0,4°С, а в период до 2030 г. она может повыситься еще на 1,5..4,5°С. Это весьма опасно для островных стран и территорий, расположенных ниже уровня моря. По прогнозам ученых, к 2050 г. уровень моря может повыситься на 25. ..40 см, а к 2100 г.— на 2 м, что приведет к затоплению 5 млн км2 суши, т. е. 3 % суши и 30 % всех урожайных земель планеты.
Парниковый эффект в атмосфере — довольно распространенное явление и на региональном уровне. Техногенные источники теплоты (ТЭС, транспорт, промышленность), сконцентрированные в крупных городах и промышленных центрах, интенсивное поступление парниковых газов и пыли, устойчивое состояние атмосферы создают около городов пространства радиусом 50 км и более с повышенными на 1...5°С температурами и высокими концентрациями загрязнений. Эти зоны (купола) над городами хорошо просматриваются из космического пространства. Они разрушаются лишь при интенсивных движениях больших масс атмосферного воздуха.
Техногенные загрязнения атмосферы не ограничиваются приземной зоной. Определенная часть примесей поступает в озоновый слой и разрушает его. Разрушение озонового слоя опасно для биосферы, так как оно сопровождается значительным повышением доли ультрафиолетового излучения с длиной волны менее 290 нм, достигающего земной поверхности. Эти излучения губительны для растительности, особенно для зерновых культур, представляют собой источник канцерогенной опасности для человека, стимулируют рост глазных заболеваний.
Основными веществами, разрушающими озоновый слой, являются соединения хлора, азота. По оценочным данным, один атом хлора может разрушить до 105 молекул озона, одна молекула оксидов азота — до 10 молекул.
Источниками поступления соединений хлора и азота в озоновый слой могут быть: вулканические газы; технологии с применением фреонов; атомные взрывы; самолеты («Конкорд», военные), в выхлопных газах которых содержатся до 0,1 % общей массы газов соединения NO и NO2; ракеты, содержащие в выхлопных газах соединения азота и хлора. Состав выхлопных газов космических систем (т) на вы|соте 0...50 км приведен ниже:
Космические системы Соедине- Оксиды Пары воды, Оксиды Оксиды ния хлора азота водород углерода алюминия
«Энергия» и «Буран», 0 0 740 750 0
СССР
«Шаттл», США 187 7 378 512 177
Значительное влияние на озоновый слой оказывают фреоны, продолжительность жизни которых достигает 100 лет. Источниками поступления фреонов являются: холодильники при нарушении герметичности контура переноса теплоты; технологии с использованием фреонов, бытовые баллончики для распыления различных веществ и т п.
По оценочным данным, техногенное разрушение озонового слоя к 1973 г достигло 0,4 . 1 %, к 2000 г.—3 %, к 2050 г. ожидается 10 %. Ядерная война может истощить озоновый слой на 20...70 %. Заметные негативные изменения в биосфере ожидаются при истощении озонового слоя на 8 10 % общего запаса озона в атмосфере, составляющего около 3 млрд т. Заметим, что один запуск космической системы «Шаттл» сопровождается разрушением около 0,3 % озона, что составляет около 107 т озона
В результате техногенного воздействия на атмосферу возможны следующие негативные последствия:
-
превышение ПДК многих токсичных веществ (СО, NO2, SO2,
С„Нт, бенз(а)пирена, свинца, безнола и др ) в городах и населенных
пунктах; -
образование смога при интенсивных выбросах NOV, С„Н„;
-
выпадение кислотных дождей при интенсивных выбросах
SOX, NOX; -
появление парникового эффекта при повышенном содержа
нии СО2, NOX, O3, СН4, Н2О и пыли в атмосфере, что способствует по
вышению средней температуры Земли; -
разрушение озонового слоя при поступлении NO* и соедине
ний хлора в него, что создает опасность УФ-облучения.
Загрязнение гидросферы. Потребление воды [8] в РФ в 2000 г. достигло 85,9 км3, в том числе на нужды, %:
-
производственные —57,9,
-
хозяйственно-питьевые —20,3,
-
орошение — 13,7;
-
сельскохозяйственное водоснабжение —2,1;
-
прочие —6,0.
При использовании воду, как правило, загрязняют, а затем сбрасывают в водоемы. Внутренние водоемы загрязняются сточными водами различных отраслей промышленности (металлургической, нефтеперерабатывающей, химической и др ), сельского и жилищно-коммунального хозяйства, а также поверхностными стоками Основными источниками загрязнений являются промышленность и сельское хозяйство
Загрязнители делятся на биологические (органические микроорганизмы), вызывающие брожение воды; химические, изменяющие химический состав воды, физические, изменяющие ее прозрачность (мутность), температуру и другие показатели
Биологические загрязнения попадают в водоемы с бытовыми и промышленными стоками, в основном предприятий пищевой, медико-биологической, целлюлозно-бумажной промышленности Например, целлюлозно-бумажный комбинат загрязняет воду так же, как город с населением 0,5 млн чел
Биологические загрязнения оценивают биохимическим потреблением кислорода — БПК. БПК5 — это количество кислорода, потребляемое за 5 сут микроорганизмами — деструкторами для полной минерализации органических веществ, содержащихся в 1 л воды Нормативное значение БПК5 = 5 мг/л. Реальные загрязнения сточных вод таковы, что требуют значений БПК на порядок больше.
Химические загрязнения поступают в водоемы с промышленными, поверхностными и бытовыми стоками. К ним относятся: нефтепродукты, тяжелые металлы и их соединения, минеральные удобрения, пестициды, моющие средства. Наиболее опасны свинец, ртуть, кадмий (табл. 2.5).
Таблица 25 Поступление тяжелых металлов в Мировой океан, т/год
Х имический элемент Сток с суши Атмосферный перенос
Свинец (1 20)105 (2 20)105
Ртуть (5 8)1"3 (2 3)103
Кадмий I (1 20)103 I (5 40) 102
Физические загрязнения поступают в водоемы с промышленными стоками, при сбросах из выработок шахт, карьеров, при смывах с территорий промышленных зон, городов, транспортных магистралей, за счет осаждения атмосферной пыли. Всего в 2000 г. в водоемы страны сброшено 55,6 км3 сточных вод, из них 20,3 км3 загрязненных (табл. 2.6).
Таблица 2 6 Содержание некоторых загрязняющих веществ в сточных водах, тыс. т
Химическое соединение 1996 г 1999 г 2000 г
Соединения меди 0,2 0,3 0,3
Соединения железа 19,7 9,5 8,2
Соединения цинка 0,8 0,6 0,7
Нефтепродукты 9,3 5,9 5,6
Взвешенные вещества 618,6 591,4 554,7
Соединения фосфора 32,4 26,5 26,4
Фенолы 0Д)8 0Д)6 0,07
В результате техногенной деятельности многие водоемы мира и нашей страны крайне загрязнены. Уровень загрязненности воды по отдельным ингредиентам превышает 10 ПДК. Наиболее высокий уровень загрязненности воды наблюдается в бассейнах рек Днестр, Печора, Обь, Енисей, Амур, Северная Двина, Волга, Урал. Воздействие на гидросферу приводит к следующим негативным последствиям:
-
снижаются запасы питьевой воды (около 40 % контролируе
мых водоемов имеют загрязнения, превышающие 10 ПДК);
-
изменяются состояние и развитие фауны и флоры водоемов;
-
нарушается круговорот многих веществ в биосфере;
-
снижаются биомасса планеты и, как следствие, воспроизвод
ство кислорода.
Опасны не только первичные загрязнения поверхностных вод, но и вторичные, образовавшиеся в результате химических реакций веществ в водной среде. Так, при одновременном попадании весной 1990 г. в р. Белая фенолов и хлоридов образовались диоксины, содержание которых в 147 тыс. раз превысило допустимые значения.
Большую опасность загрязненные сточные воды представляют в тех случаях, когда структура грунта не исключает их попадание в зону залегания грунтовых вод. В ряде случаев до 30...40 % тяжелых металлов из почвы поступает в фунтовые воды.
Загрязнение земель. Нарушение верхних слоев земной коры происходит при: добыче полезных ископаемых и их обогащении; захоронении бытовых и промышленных отходов; проведении военных учений и испытаний и т. п. Почвенный покров существенно загрязняется осадками в зонах рассеивания различных выбросов в атмосфере, пахотные земли — при внесении удобрений и применении пестицидов.
Ежегодно из недр страны извлекается огромное количество горной массы, вовлекается в оборот около трети, используется в производстве около 7 % объема добычи. Большая часть отходов не используется и скапливается в отвалах.
Рис 2 4 Динамика образования токсичных отходов в Российской Федерации, млн т
Примерами значительного накопления отходов, связанных с добычей полезных ископаемых, могут служить терриконы угольных шахт, отвалы вблизи карьеров при наземной добыче руд. Наиболее остро стоит вопрос утилизации отходов в угольной промышленности, поскольку на некоторых шахтах добыча 1 тыс. т угля сопровождается подъемом из шахт до 800 т породы.
Оценивая динамику изменения количества образовавшихся токсичных отходов (рис. 2.4), можно сделать вывод о постоянном росте данного показателя в промышленности и, как следствие, в целом по России: с 82,6 млн. тв 1996 г. до 132,5 млн т в 2000 г. Практически весь объем образующихся токсичных отходов (95 %) имеет промышленное происхождение, а остальные 5 % отходов этой категории распределяются почти поровну между сельским хозяйством (3,7 млн т) и ЖКХ (3,4 млн т). По данным Госкомстата России, к 2000 г. в России накоплено 2 млрд т токсичных отходов.