ВСН 30-77 (558353), страница 2
Текст из файла (страница 2)
2.16. Схему двухступенчатой бескомпрессорной системы кондиционирования воздуха, приведенную на рис. 2, следует применять при кондиционировании воздуха в разнохарактерных помещениях.
При применении этой схемы производительность испарительного кондиционера по воздуху следует принимать равной суммарной производительности теплообменников II приточного кондиционера, работающих в качестве доводчиков.
2.17. При проектировании двухступенчатой бескомпрессорной системы кондиционирования воздуха по схеме, приведенной на рис. 2, необходимо предусматривать следующие режимы работы приточного кондиционера: круглогодичное кондиционирование воздуха, летнее охлаждение приточного воздуха.
Типовые компоновки приточных кондиционеров в зависимости от их назначения приведены на рис. 5.
Рис. 5. Типовые компоновки приточных кондиционеров
а – для схемы бескомпрессорной системы кондиционирования воздуха, приведенной на рис. 1; б – для схемы бескомпрессорной системы кондиционирования воздуха, приведенной на рис. 2; I – при использовании приточного кондиционера в качестве круглогодичной установки; II – при использовании приточного кондиционера в качестве охлаждающей установки; 1 – вентагрегат; 2 – камера обслуживания; 3 – теплообменники (воздухоохладители); 4 – вставка; 5 – камера орошения; 6 – фильтр; 7 – камера воздушная
2.18. При проектировании двухступенчатых бескомпрессорных систем кондиционирования воздуха теплообменники I и II приточных кондиционеров следует располагать на нагнетательной стороне вентиляторов.
2.19. В районах с большими перепадами между дневными и ночными температурами приточные кондиционеры допускается оснащать баками-аккумуляторами для использования ночного холода. Баки-аккумуляторы следует присоединять по схеме, приведенной на рис. 1.
2.20. Приточный и испарительный кондиционеры двухступенчатых бескомпрессорных систем кондиционирования воздуха, как правило, следует компоновать из типовых секций центральных кондиционеров.
2.21. Теплообменники I, II и III в приточных и испарительных кондиционерах следует компоновать из типовых секций воздухонагревателей или воздухоохладителей. Допускается компоновка теплообменников I и II из пластинчатых или спирально-навивных калориферов, выпускаемых промышленностью.
Следует предусматривать параллельное присоединение теплообменников по холодоносителю при общем противоточном движении теплообменивающихся сред. Принципиальные схемы компоновки теплообменников I, II и III, схемы их обвязки приведены на рис. 6.
Рис. 6. Принципиальная схема обвязки теплообменников (см. пп. 2.7 и 2.8)
а – теплообменников I и III из калориферов типа КВБ; б – теплообменников I и III из калориферов типа К4ВП или из типовых секций кондиционеров К-30 и Кт-40; в – теплообменника II из калориферов типа К4ВП, КВБ или из типовых секций кондиционеров типа Кт-60 и Кт-80; 1 – трубопровод холодной воды от камеры орошения; 2 – трубопровод отепленной воды к камере орошения; 3 – кран для удаления воздуха; 4 – трубопровод горячей воды из теплосети; 5 – трубопровод обратной воды в теплосеть; 6 – кран для спуска воды; 7 – охлаждаемый поток воздуха
2.22. При проектировании двухступенчатых бескомпрессорных систем кондиционирования воздуха необходимо предусматривать следующие схемы автоматического регулирования температуры воздуха в обслуживаемых помещениях в теплый период года:
а) двухпозиционное регулирование расходов воды в контурах циркуляции оросительных камер БК и МК (рис. 7);
Рис. 7. Принципиальная схема двухпозиционного регулирования бескомпрессорной системы кондиционирования воздуха
I, II, III – теплообменники (воздухоохладители); IV, V – соответственно вентиляторы испарительного и приточного кондиционеров; VI – датчик температуры воздуха в помещении; МК, БК – соответственно оросительные камеры малого и большого контуров циркуляции; VII – наружный воздух; VIII – рециркуляционный воздух; IX – выброс в атмосферу воздуха в теплый период года; Х – приточный кондиционер; XI – испарительный кондиционер
б) пропорциональное регулирование расхода воды в контуре циркуляции оросительной камеры МК (рис. 8) и двухпозиционное регулирование расхода воды в контуре циркуляции оросительной камеры БК.
Рис. 8. Принципиальные схемы автоматизации малого контура циркуляции бескомпрессорной системы кондиционирования воздуха
а – схема с клапаном на перемычке; б – схема с двумя взаимообратными клапанами; МК – оросительная камера малого контура циркуляции воды; I – датчик температур воздуха в помещении; II – теплообменник (воздухоохладитель)
2.23. В случае применения схемы регулирования, приведенной на рис. 7, при понижении температуры воздуха в помещении ниже расчетной вначале следует предусматривать выключение насоса в контуре циркуляции оросительной камеры БК, а затем насоса в контуре циркуляции камеры МК.
При повышении температуры воздуха в помещении включение указанных насосов следует предусматривать в обратном порядке.
2.24. Пропорциональное регулирование расхода холодной воды в теплообменнике II следует предусматривать при постоянном ее расходе в оросительной камере МК по одной из следующих схем:
с клапаном расхода воды на перемычке;
с трехходовым клапаном;
с двумя взаимообратными клапанами.
2.25. Допускается применение пропорционального регулирования расхода воды в контуре циркуляции оросительной камеры БК. Кроме того, допускается при понижении температуры в помещении ниже расчетной предусматривать отключение теплообменника III. При дальнейшем понижении температуры в помещении следует предусматривать отключение насоса в контуре циркуляции оросительной камеры БК.
2.26. При проектировании двухступенчатых бескомпрессорных систем кондиционирования воздуха по схеме на рис. 2, в контуре циркуляции воды оросительной камеры МК должны быть установлены регуляторы давления "до себя".
2.27. При выполнении требований п. 2.6 настоящей Инструкции схема автоматического регулирования параметров воздуха в обслуживаемых помещениях в холодный и переходный периоды года (при работе испарительного кондиционера по схеме на рис. 1) аналогична типовым схемам обычных центральных кондиционеров, разработанным ГПИ Сантехпроект.
Приложение 1
Принцип работы двухступенчатой бескомпрессорной системы кондиционирования воздуха
1. Двухступенчатая бескомпрессорная система кондиционирования воздуха (БСКВ) состоит из двух самостоятельных кондиционеров – приточного и испарительного (рис. 1), связанных между собой контурами циркуляции воды.
2. Приточный кондиционер БСКВ (рис. 1) состоит из следующих основных элементов:
поверхностного теплообменника I;
поверхностного теплообменника II;
вентилятора V.
Испарительный кондиционер (рис. 1) состоит из следующих основных элементов:
поверхностного теплообменника III;
оросительной камеры МК;
оросительной камеры БК;
вентилятора IV.
3. В БСКВ имеются два самостоятельных контура циркуляции воды, рис. 1:
контур циркуляции оросительной камеры МК (малый контур), включающий теплообменник II, оросительную камеру МК и циркуляционный насос VI;
контур циркуляции оросительной камеры БК (большой контур), включающий параллельно соединенные по холодоносителю теплообменники I и III, оросительную камеру БК и циркуляционный насос VII.
4. В теплый период года тепло приточного воздуха отводится к воде, циркулирующей в теплообменниках I и II.
Охлаждение воды, нагретой в теплообменниках I и III, осуществляется в оросительной камере БК большого контура циркуляции воды. Охлаждение воды, нагретой в теплообменнике II, осуществляется в оросительной камере МК малого контура циркуляции воды.
5. В двухступенчатой бескомпрессорной системе кондиционирования воздуха осуществляется перенос энергии в виде тепла от источника с более низким теплосодержанием (от наружного воздуха в приточном кондиционере) к источнику с более высоким теплосодержанием (к вспомогательному потоку воздуха в испарительном кондиционере).
В результате затраты внешней энергии потенциал тепла, отведенного от приточного воздуха повышается.
6. Для обеспечения большей степени охлаждения приточного воздуха в БСКВ предусматривается:
а) предварительное охлаждение вспомогательного потока воздуха в испарительном кондиционере, что позволяет снизить температуру его предела охлаждения и получить более холодную воду;
б) два самостоятельных контура циркуляции воды, позволяющие увеличить количество воды, циркулирующей в каждом контуре, что обусловливает ее небольшой подогрев в теплообменниках и простые условия оборотного охлаждения в оросительных камерах; разделить температурные условия работы каждого контура циркуляции воды.
Рис. 9. Схема процессов обработки воздуха в БСКВ на J — d-диаграмме
В малом контуре циркулирует вода более низкой температуры, чем в большом контуре;
в) использование в оросительной камере БК, предназначенной для охлаждения воды, циркулирующей в теплообменниках I и III, вспомогательного потока воздуха (в состоянии близком к насыщению) после оросительной камеры МК.
7. Процесс обработки воздуха в БСКВ в теплый период года представлен в I — d-диаграмме на рис. 9, где точки (арабские цифры), характеризующие состояние воздуха до и после теплообменных аппаратов, совпадают с обозначениями на рис. 1.
Линии на рис. 9 для приточного кондиционера обозначают следующие процессы:
1–2 – нагревание воздуха в вентиляторе V;
2–3 – охлаждение воздуха в теплообменнике I;
3–4 – охлаждение воздуха в теплообменнике II;
9–10 – нагревание воды в теплообменнике II;
4–13 – изменение состояния приточного воздуха в помещении.
Линии на рис. 9 для испарительного кондиционера обозначают следующие процессы:
5–6 – охлаждение воздуха в теплообменнике III;
6–7 – повышение теплосодержания в камере МК;
7–8 – повышение теплосодержания в камере БК;
11–12 – нагревание воды в теплообменниках I и III;
12–11 – охлаждение воды в оросительной камере БК.
8. В зимний и переходный периоды года испарительный кондиционер (рис. 1) согласно требованиям п. 2.6 настоящей Инструкции обеспечивает нагревание приточного воздуха в теплообменниках первого и второго подогрева и адиабатическое увлажнение воздуха в оросительной камере МК.
9. При работе БСКВ соблюдаются следующие уравнения теплового баланса:
а) количество тепла, отнятого от наружного воздуха в приточном кондиционере, равняется количеству тепла, переданного воздуху в испарительном кондиционере. При равных количествах воздуха в приточном и испарительном кондиционерах общее понижение теплосодержания воздуха DI в приточном кондиционере равняется общему повышению теплосодержания воздуха в испарительном кондиционере (рис. 9)
DIпр = I2 – I4 = DIисп = I8 – I5; (1)
б) количество тепла, отнятого от воздуха в теплообменнике II, равняется количеству тепла, переданного воздуху в камере МК
D III = I3 – I4 =
(tc3 – tс4)DIМК = I7 – I6; (2)
в) количество тепла, отнятого от воздуха в I и III теплообменниках, равняется количеству тепла, переданного воздуху в оросительной камере БК,
D II – D IIII = (I2 – I3) + (I5 – I6) = D IБК = I8 – I7 (3)
Приложение 2
Теплотехнический расчет двухступенчатых бескомпрессорных систем кондиционирования воздуха
1. С целью предварительного определения воздухообменов при проектировании БСКВ температуру подаваемого в помещение воздуха в летний период года после приточного кондиционера следует принимать:












