ТВиМС (555061), страница 4
Текст из файла (страница 4)
Пример. Подлежат исследованию 1000 проб руды. Вероятность промышленного содержания металла в каждой пробе равна 0,15. Найти границы, в которых с вероятностью 0,9973 будет заключено число проб руды с промышленным содержанием металла.
Решение. Искомые границы для числа проб руды с промышленным содержанием металла (из данных 1000 проб) определяются величинами
и
(см. интегральную теорему Муавра-Лапласа). Будем предполагать, что искомые границы симметричны относительно величины
, где
и
. Тогда
,
для некоторого
, и, тем самым, единственной определяющей неизвестной данной задачи становится величина
. Из следствия 1 и условия задачи следует, что
По таблице значений функции Лапласа найдем такое , что
Тогда и
. Окончательно получаем искомые границы:
т.е. с вероятностью 0,9973 число проб руды с промышленным содержанием металла (из данных 1000 проб) попадет в интервал (116; 184).
Пример. В лесхозе приживается в среднем 80 саженцев. Сколько саженцев надо посадить, чтобы с вероятностью 0,9981 можно было утверждать, что доля прижившихся саженцев будет находиться в границах от 0,75 до 0,85.
Решение. – вероятность прижиться для каждого из саженцев,
. Пусть
– необходимое число саженцев (искомая величина данной задачи) и
– число прижившихся из них, тогда
– доля прижившихся саженцев. По условию,
Данные границы для доли симметричны относительно величины
, поэтому неравенство
равносильно неравенству
Следовательно, вероятность 0,9981 – это та самая вероятность, которая вычисляется по следствию 2 из интегральной теоремы Муавра-Лапласа при ,
:
По таблице функции Лапласа найдем такое значение , что
Это значение:
Тогда
Заметим, что значение округлено до целых в большую сторону, чтобы обеспечить, как говорят, “запас по вероятности”. Кроме того, видно, что полученное значение
достаточно велико (более 100), поэтому применение интегральной теоремы Муавра-Лапласа для решения данной задачи было возможно.
Тема 3. Дискретная случайная величина
3.1. Закон распределения дискретной случайной величины
Определение. Случайной величиной называется переменная, которая в результате испытания принимает то или иное числовое значение.
Пример. Число попаданий в мишень при выстрелах – случайная величина.
Пример. Рост наудачу взятого человека – случайная величина.
Определение. Случайная величина называется дискретной, если число ее возможных значений конечно или счетно.
(Напомним, что множество называется счетным, если его элементы можно перенумеровать натуральными числами.)
В этом смысле, число попаданий в мишень – пример дискретной случайной величины. Рост человека – непрерывная случайная величина (такие случайные величины будут рассмотрены ниже).
Для обозначения случайных величин будем использовать заглавные буквы латинского алфавита (возможно с индексами), например,
и т.п.
Определение. Законом распределения дискретной случайной величины называется такая таблица, в которой перечислены все возможные значения этой случайной величины (без повторений) с соответствующими им вероятностями.
В общем виде закон распределения для случайной величины, например, :
Из определения закона распределения следует, что события
… ,
образуют полную систему, поэтому (см. следствие из теоремы сложения вероятностей для несовместных событий в §1.6):
т.е.
Данное равенство называется основным свойством закона распределения.
Пример. Два стрелка одновременно выстреливают в мишень. Вероятность попадания для первого равна 0,6, для второго – 0,8. Составить закон распределения случайной величины – общего числа попаданий в мишень.
Решение. Возможные значения данной случайной величины: 0, 1, 2. Так же как в примере из §1.6, через и
обозначим события, состоящие в попадании в мишень первого и второго стрелков (соответственно). Тогда аналогично упомянутому примеру получаем
Окончательно, закон распределения случайной величины имеет вид:
Упражнение. В коробке 3 белых шара и 2 красных. Составить закон распределения случайной величины – числа белых шаров среди 2-х извлеченных шаров.
Ответ.
Пример. В коробке – 3 белых шара и 2 красных. Шары извлекаются последовательно до появления белого шара. Составить закон распределения случайной величины Х – числа извлеченных шаров.
Решение. Возможные значения данной случайной величины: 1, 2, 3. Событие (из коробки будет извлечен один единственный шар) наступает тогда и только тогда, когда первый из шаров оказывается белым, т.к. появление именно белого шара является сигналом к прекращению последующих извлечений (см. условие). Поэтому
где событие – первый из извлеченных шаров – белый. Событие
(из коробки будет извлечено ровно 2 шара) наступает тогда и только тогда, когда первый из извлеченных шаров оказывается красным, а второй – белым. Поэтому
где событие – первый из извлеченных шаров – красный,
– второй шар – белый. Наконец событие
(из коробки будет извлечено 3 шара) наступает тогда и только тогда, когда первый шар – красный, второй – красный и третий – белый. Поэтому
Окончательно искомый закон распределения имеет вид:
Упражнение. Имея 3 патрона, стрелок стреляет по мишени до первого попадания (или до израсходования патронов). Вероятность попадания при каждом выстреле равна 0,8. Составить закон распределения случайной величины Х – числа произведенных выстрелов.
Ответ.
Пример. Стрелок стреляет в мишень 3 раза. Вероятность попадания при каждом выстреле равна 0,8. Составить закон распределения случайной величины Х – числа попаданий в мишень.
Решение. Возможные значения для числа попаданий: 0, 1, 2, 3. Вероятности того, что случайная величина Х примет эти значения вычисляются по формуле Бернулли при
Окончательно искомый закон распределения имеет вид:
Полученный закон распределения является частным случаем так называемого биномиального закона распределения (при
).
Определение. Случайная величина Х имеет биномиальный закон распределения с параметрами и
, если ее закон распределения имеет вид :
где вероятности вычисляются по формуле Бернулли:
В пределе при и
биномиальное распределение переходит в так называемое распределение Пуассона.
Определение. Говорят, что случайная величина Х имеет распределение Пуассона с параметром , если ее закон распределения имеет вид:
где