ТВиМС (555061), страница 12

Файл №555061 ТВиМС (Теория вероятностей и математическая статистика. Теория и примеры решения задач) 12 страницаТВиМС (555061) страница 122015-11-20СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 12)

.

Решая полученное уравнение относительно , получаем

,

откуда

,

(также как и выше округление здесь произведено в большую сторону).

Таким образом, для того, чтобы с вероятностью 0,9973 неизвестное значение средней заработной платы всех рабочих накрывалось доверительным интервалом (144,73; 158,47) в случае повторной выборки, в эту выборку следует взять 113 рабочих. Аналогично, для того, чтобы с вероятностью 0,9973 неизвестное значение средней заработной платы всех рабочих накрывалось доверительным интервалом (145,33; 157,87) в случае бесповторной выборки, в выборку следует взять 94 рабочих.

Замечание. Если в задаче на выборочный метод объем генеральной совокупности много больше объема выборки (в ряде случаев это предполагается по умолчанию, а объем генеральной совокупности просто не указан), естественно считать, что . Как следует из формул Теоремы 1, случаи повторной и бесповторной выборок дают тогда совпадающие результаты.

7.5 Оценка генеральной доли

Пусть требуется оценить долю тех объектов заданной генеральной совокупности, которые удовлетворяют некоторому условию генеральную долю . Для этого из генеральной совокупности выделяют выборку, и по результатам её обследования находят долю тех объектов, которые удовлетворяют условию выборочную долю . Очевидно, что , где – объем выборки, – число тех её объектов, которые удовлетворяют условию . Выборочная доля в данном случае является той величиной, с помощью которой мы получим информацию о неизвестном значении генеральной доли.

Таким образом, выборочная доля является оценкой генеральной доли .

Пример. – доля бракованных деталей генеральной совокупности, – доля бракованных деталей в выборке. Условие (событие) – деталь, взятая наудачу из генеральной совокупности – бракована.

Простейший способ оценивания – точечное оценивание – подразумевает использование приближенного равенства .

Как и всякая оценка, выборочная доля является случайной величиной. Действительно, выборка из генеральной совокупности выделяется случайным образом. Соответственно то значение, которое примет выборочная доля, будет случайным.

Следующие теоремы характеризуют выборочную долю как случайную величину.

Теорема 1. Математическое ожидание выборочной доли равно генеральной доле:

.

Среднее квадратическое отклонение ( ) выборочной доли вычисляется по формулам

в случае повторной выборки и

в случае бесповторной выборки, где объем генеральной совокупности.

Напомним, что по определению среднего квадратического отклонения в случае повторной выборки имеем (аналогично в случае бесповторной выборки).

Замечание. При применении формул Теоремы 1 полагают

.

Теорема 2. Закон распределения выборочной доли неограниченно приближается к нормальному закону при неограниченном увеличении объема выборки.

Подобно тому, как мы это сделали в предыдущем параграфе, как следствие Теоремы 2, получаем формулу доверительной вероятности:

– в случае повторной выборки. Заменяя в последнем равенстве на , получаем формулу доверительной вероятности в случае бесповторной выборки.

По определению, величина , фигурирующая в формуле доверительной вероятности, называется предельной ошибкой выборки. Интервал называется доверительным интервалом.

Выше было указано, в чем состоит точечная оценка генеральной доли. Интервальное оценивание сводится, например, к вычислению значения доверительной вероятности при заданной предельной ошибке выборки.

Теорема 3. В случае повторной выборки выборочная доля является несмещенной и состоятельной оценкой генеральной доли.

Пример. Выборочные данные о надое молока для 100 коров из 1000 представлены таблицей:

Надой молока, ц

10-20

20-30

30-40

40-50

50-60

Число коров

2

18

46

30

4

100

  1. Найти вероятность того, что доля всех коров с надоем молока более 40 ц отличается от такой доли в выборке не более чем на 0,05 (по абсолютной величине), для случая повторной и бесповторной выборок.

  2. Найти границы, в которых с вероятностью 0,9596 заключена доля всех коров с надоем более 40 ц.

  3. Сколько коров надо обследовать, чтобы с вероятностью 0,9786 для генеральной доли коров с надоем более 40 ц можно было гарантировать те же границы что и в п.2.

Решение. Число коров с надоем более 40 ц равно 34 ( , см. заданный вариационный ряд). Тогда .

Для нахождения доверительной вероятности п. 1 задания воспользуемся одноименной формулой при .

Пусть рассматриваемая выборка – повторная. Тогда по формуле Теоремы 1, учитывая Замечание, получаем

.

Следовательно

.

Аналогично, в случае бесповторной выборки:

,

.

Доверительным в данном случае является интервал . Таким образом, неизвестное значение доли всех коров с надоем более 40 ц накрывается доверительным интервалом (0,29;0,39) с вероятностью 0,7109 в случае повторной выборки и с вероятностью 0,733 в случае бесповторной выборки.

В п. 2 задания при заданном значении доверительной вероятности искомым является доверительный интервал. Поскольку значение выборочной доли известно, остается найти предельную ошибку выборки .

Пусть выборка – повторная. По условию, принимая во внимание формулу доверительной вероятности, имеем

.

По таблице значений функции Лапласа найдем такое , что : . Тогда и, используя найденное выше значение , получаем

.

Соответственно, доверительным будет интервал:

.

Пусть выборка – бесповторная. Аналогично предыдущему, получаем предельную ошибку выборки

и доверительный интервал:

.

Таким образом, доля всех коров с надоем молока более 40 ц с вероятностью 0,9596 накрывается доверительным интервалом (0,243; 0,437) в случае повторной выборки и интервалом (0,248; 0,432) в случае бесповторной выборки.

В п. 3 по заданным значениям доверительной вероятности и предельной ошибки выборки найдем необходимый объем выборки. Из начла решения заимствуем значение выборочной доли , найденное по исходному вариационному ряду.

Пусть выборка – повторная. По условию, принимая во внимание формулу доверительной вероятности, имеем:

.

По таблице значений функции Лапласа найдем такое , что : . Тогда и, . Подставляя вместо выражение из Теоремы 1, приходим к уравнению относительно неизвестной величины :

.

Решая это уравнение относительно , подставляя в полученную формулу известные величины, завершаем решение

(заметим, что, как и ранее, округление здесь произведено в большую сторону).

Аналогично, в случае бесповторной выборки из условия и формулы доверительной вероятности следует равенство

или, принимая во внимание известное выражение для (см. Теорему 1):

.

Решая это уравнение относительно , получаем

.

Подставляя в правую часть последнего равенства известные значения, окончательно имеем:

.

Таким образом, в повторную выборку надо взять 127 коров, чтобы с вероятностью 0,9786 можно было утверждать, что доля всех коров с надоем молока более 40 ц накрывается доверительным интервалом (0,243; 0,437). Аналогично, в бесповторную выборку надо взять 123 коровы, чтобы с вероятностью 0,9786 можно было утверждать, что доля всех коров с надоем молока более 40 ц накрывается доверительным интервалом (0,248; 0,432).

Домашнее задание: 9.19, 9.21, 9.23, 9.30.

Характеристики

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее