Главная » Просмотр файлов » Теоретико-игровые методы принятия решений (Еремеев А. П.)

Теоретико-игровые методы принятия решений (Еремеев А. П.) (545581), страница 5

Файл №545581 Теоретико-игровые методы принятия решений (Еремеев А. П.) (Теоретико-игровые методы принятия решений (Еремеев А. П.)) 5 страницаТеоретико-игровые методы принятия решений (Еремеев А. П.) (545581) страница 52015-08-22СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

где V – цена игры, Ni и Nj число применений соответственно стратегий Аi и Bj за k партий, pi и qj – значения вероятностей в оптимальных стратегиях SA = (pi), i = 1,, m, SB = (qj), j = 1, , n, игроков A и B соответственно.

Проиллюстрируем метод на примере игры G(33), представленной табл. 3.12.

Таблица 3.13

B j

Ai

B1

B2

B3

A1

7

2

9

A2

2

9

0

A3

9

0

11

Требуется найти решение – пару оптимальных смешанных стратегий (SA, SB), SA = (p1, p2, p3), SB = (q1, q2, q3), и цену игры V.

Будем искать пару смешанных стратегий SA = (p1, p2, p3), p1 + p2 + p3 = 1, SB = (q1, q2, q3), q1 + q2 + q3 = 1 и цену игры V.

Построим табл. 3.13 для первых десяти итераций.

Таблица 3.14

k

i

B1

B2

B3

j

A1

A2

A3

V

V

V*

1

3

9

0

11

2

2

9

0

0

9

4,5

2

2

11

9

11

2

4

18

0

4,5

9

6,75

3

2

13

18

11

3

13

18

11

3,67

6

4,84

4

2

15

27

11

4

22

18

22

2,75

5,5

4,13

5

1

22

29

20

3

31

18

33

4,0

6,6

5,3

6

3

31

29

31

2

33

27

33

4,84

5,5

5,17

7

1

38

31

40

2

35

36

33

4,43

5,14

4,79

8

2

40

40

40

2

37

45

33

5,0

5,61

5,30

9

2

42

49

40

3

46

45

44

4,45

5,11

4,78

10

1

49

51

49

1

53

47

53

4,90

5,30

5,1

Поясним процесс заполнения табл. 3.13.

Пусть начинает (k = 1) игрок A и выбирает на первом шаге стратегию А1. Его выигрыш в зависимости от выбора игрока B может равняться 9 (при выборе стратегии B1), 0 (при выборе B2) или 11 (при выборе B3). Поскольку теперь выбор за игроком B (а он заинтересован в минимизации выигрыша игрока A), то выделим (жирным шрифтом) минимальный выигрыш 0, соответствующий стратегии B2. Следовательно игроку B выгоднее всего ответить стратегией B2, что, в свою очередь, может привести к выигрышу игрока A при его ответе в следующей партии, равному 2 (при выборе стратегии A1), 9 (A2) или 0 (A3). Так как игрок A заинтересован в максимизации выигрыша, то выделим максимальный выигрыш 9 (для A2). Соответствующие значения V, и V* равны 0; 9 и 4,5.

Во второй партии (k = 2) игроку A, следовательно, выгодно выбрать стратегию A2, которая позволит ему накопить выигрыш, равный соответственно 11 (для B1), 9 (для B2) или 11 (для B3) и т.д. Заметим, что для k = 4 в столбцах А1 и А3 получаются одинаковые накопленные выигрыши (22), поэтому игрок A в пятой партии может выбрать как стратегию А1, так и А3.

К сожалению (что видно и по табл. 3.12), сходимость данного метода довольно слабая, но существуют методы ее ускорения. Критерием останова можно выбрать достаточную стабильность величины V* при увеличении числа итераций.

Для рассматриваемого примера в итоге получим:

и , что соответствует точному решению, полученному, например, методом Лагранжа.

Как уже отмечалось, сравнительно невысокая трудоемкость данного метода часто делает его более предпочтительным по сравнению с методом линейного программирования (например, симплекс-методом) при решении задач линейного программирования (после их сведения к соответствующей теоретико-игровой задачи) большой размерности.

3.4.Практический пример

Рассмотрим следующую задачу. Проводится конкурс на реализацию двух проектов, в котором участвует два претендента – конструкторское бюро 1 (КБ1), имеющее 4 отдела, и конструкторское бюро 2 (КБ2), имеющее 3 отдела. Финансирование первого проекта – a денежных единиц, второго – b. Практика проведения данного конкурса показывает, что, как правило, проект достаётся тому КБ, которое выделяет большее число отделов на его выполнение. Если каждое КБ выделяет одинаковое число отделов на выполнение проекта, то они имеют одинаковую вероятность на его получение. Требуется определить, сколько отделов следует выделить каждому КБ на выполнение первого и второго проектов с целью максимизации их финансирования.

Если в качестве стратегии КБ взять пару (, ), где  и количество отделов, выделяемых соответственно под первый и второй проекты, то у КБ1 (игрока A) имеется 5 стратегий: A1 = (4; 0), A2 = (3; 1), A3 = (2; 2), A4 = (1; 3), A5 = (0; 4), а у КБ2 (игрока B) – 4 стратегии: B1 = (3; 0), B2 = (2; 1), B3 = (1; 2), B4 = (0; 3).

Так как целью каждого из игроков является максимизация собственного выигрыша (возможного финансирования), то соответствующая парная игра G(54) не является антагонистической (выигрыш одного игрока не равен проигрышу другого).

Для того чтобы свести данную игру к антагонистической необходимо из выигрышей aij игрока A вычесть средний выигрыш – (a + b)/2. В итоге получим антагонистическую игру G(54), представленную табл. 3.14.

Таблица 3.15

В1

В2

В3

В4

А1

а / 2

(ab) / 2

(ab) / 2

(ab) / 2

А2

b / 2

a / 2

(ab) / 2

(ab) / 2

А3

(ba) / 2

b / 2

a / 2

(ab) / 2

А4

(ba) / 2

(ba) / 2

b / 2

a / 2

А5

(ba) / 2

(ba) / 2

(ba) / 2

b / 2

Рассмотрим случай а = b, представленный табл. 3.15. Упростим игру, удалив доминируемые и дублируемые стратегии A1, A5, B2, B3, A3. Получим игру G(22), представленную табл. 3.16.

Таблица 3.16

B j

Ai

В1

В 2

В 3

В4

А 1

a / 2

0

0

0

А2

a / 2

a / 2

0

0

А 3

0

a / 2

a / 2

0

А4

0

0

a / 2

a / 2

А 5

0

0

0

a / 2

Таблица 3.17

B j

Ai

В1

В4

А2

a / 2

0

А4

0

a / 2

Решив данную игру, например, методом Лагранжа, получим: p2 = p4 = 0,5; q1 = q4 = 0,5; V = a/4.

Тогда для исходной игры G(54) решением будет: SA = (0,0; 0,5; 0,0; 0,5; 0,0), SB = (0,5; 0,0; 0,0; 0,5), VКБ1 = a / 4 + a = 5a / 4, VКБ2 = 3a / 4.

Характеристики

Тип файла
Документ
Размер
1,18 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее