lr4 (543709), страница 3
Текст из файла (страница 3)
tp- квантиль порядка (1+ РД)/2 для N(0,1).
2. Выполнение в пакете STATGRAPHICS
Уровень доверия
а) Сгенерируем массив z размером kn=5010=500 наблюдений, распределенных нормально с параметрами а=10, 2 = 22 = 4 (процедурой H.5. Random Number Generation) и образуем k=50 выборок объема n=10 т.е. матрицу х размерности 10 х 50: процедура A.2. File Operation, операция J.Update, оператором
10 50 RESHAPE z
б) Оценим средние (массив xs длиной k=50) по (1) процедурой A.2, операция J, оператором
SUM x/10
в) Определим квантили fp порядков (1+ РД)/2 (0.95 , 0.995 , 0.9995) нормального распределения N(0,1):
H.4. Critical Values (критические значения) - (Dist. Number: 14 (Normal)) - F6 - (mean: 0, std. deviation: 1) - F6 - (Area at or below: 0.95) - F6.
г) Определим массив a1 длины k = 50 левых концов интервалов по (5): процедура A.2 , операция J, оператор
xs - fp * / SQRT ( n )
д) Аналогично определим массив а2 правых концов интервалов.
е) Результаты k = 50 испытаний доверительных интервалов проанализируем по графику, полученному с помощью процедуры E.2. Multiple X-Y Plots, задав
X: COUNT 50
Y: a1
Y: a2
Y: 50 REP 10
Последняя строка потребовалась для изображения истинного значения а=10.
Определим, сколько раз из k=50 доверительный интервал оказался неверным. Это сделаем для трех значений РД (соответственно fp).
Графики для РД =0.9 и РД =0.99 распечатаем.
Задание. Провести аналогично k =50 испытаний доверительного интервала (7) - (9) для случая неизвестной дисперсии.
Интервалы для параметров нормального распределения
Сгенерируем выборку из 20 наблюдений над нормальной случайной величиной со средним а = 10 и дисперсией 2 = 4 и определим доверительные интервалы для а и с уровнем доверия РД : 0,8, 0,9, 0,95, 0,98, 0,99. Выполняется в процедурном блоке G. Estimation and Testing процедурой 1. One-Sample Analysis Результаты выпишем в виде таблицы. C ростом РД интервал расширяется, с ростом n - уменьшается.
3. Выполнение в пакете STATISTICA
Уровень доверия
Работаем в модуле Basic Statistics and Tables.
а) Генерируем k = 50 выборок по n = 10 наблюдений, нормально распределенных с параметрами: среднее а = 10, дисперсия 2 = 4.
Создадим таблицу с 50 строками (выборками) и 10 (объем выборки) столбцами:
File - New Data - File Name: Doverit (например)- ОК.
Создана таблица 10v 50c; добавим 40 строк после 10-й:
Кнопка Vars (или Edit - Cases) - Add - Number of Cases to Add: 40, insert after Case: 10 - OK.
Сгенерируем наблюдения:
Vars - All Specs - в появившейся таблице Variables Doverit.sta в 4-м столбце Long name выделим 1-ю клетку и запишем в ней
= Vnormal (Rnd (1); 10, 2)
и перенесем эту запись в строки со 2-й по 10-ю:
Edit - Copy (или кнопка Copy) (копирование в буфер),
затем выделим следующую клетку и
Edit - Paste (или кнопка Paste).
Закроем окно. Выполним назначения:
Edit - Variables - Recalculate...(или кнопка Х = ?).
б) Оценим средние:
Edit - Block Stats/Rows - Means.
Образован 11-й столбец MEAN. Присвоим ему имя xs:
выделим столбец MEAN - Vars - Current Specs...-Name: xs - OK.
в) Определим квантили fp порядков (1 + РД)/2 (0.95, 0.995, 0.9995) нормального N (0, 1) распределения:
Analisis-Probability Calculator - в окне устанавливаем Distribution Z (Normal), выделим Inverse, p: 0.95 - Compute; результат в поле Z: 1.645.
Аналогично определим fp для остальных вероятностей (2.57 и 3.29).
г) Определим по (5) столбцы а1 и а2 левых и правых концов доверительных интервалов.
Выделим заголовок столбца xs - Vars - Add - Number...: 2, after: xs - OK - выделим новый столбец - Vars - Current Specs - Name: A1 (левые концы), Long name:
= xs - 1,65 2 / Sgrt(10)
После ОК получаем столбец левых концов. Аналогично получаем столбец а2 правых концов.
д) Результаты k = 50 испытаний доверительного интервала представим графически:
выделим столбец а1 и а2 - Graphs - Custom Graphs - 2D Graphs - OK (соглашаемся с предложениями).
Видим график (рис.1), по которому определяем число экспериментов (6 из k = 50), в которых интервал не содержит истинного значения параметра. Можем определить координаты любой точки на рисунке, поставив на нее стрелку: координаты в верхнем левом углу. Распечатаем график.
е) повторим пп. г) и д) для двух других значений доверительной вероятности.
Задание: Провести аналогично k = 50 испытаний доверительного интервала (7) - (9) для случая неизвестной дисперсии (рис.2 для РД = 0.9; 5 ошибок).
Рис. 1.
Рис .2.
Интервалы для среднего нормальной совокупности
Сгенерируем выборку (столбец) из 20 наблюдений над нормальной случайной величиной со средним а = 10 и дисперсией 2 = 4 и определим доверительные интервалы для а с уровнем доверия РД : 0.8, 0.9, 0.95, 0.98, 0.99, 0.999. Выполняется командой
Analisis - Descriptive staistics - в поле Statistics выбрать Conf. Limits for means и указывать значение Alpha error: 80 (90, 95 т.д.).
4. Выполнение в пакете SPSS
Уровень доверия
а) Генерация k = 50 выборок по n = 10 наблюдений, нормально распределенных с параметрами: среднее а = 10, дисперсия 2 = 4.
Выборки поместим в таблицу с 50 строками (выборками) и 10 (объем выборки) столбцами (при таком размещении сокращается работа по генерации наблюдений). В первом столбце таблицы выделяем клетку в 50-й строке и вводим точку. 50 строк создано.
Переименуем 1-й столбец:
Data - Define Variable - Name: x 01 - OK
Сгенерируем наблюдения:
Transform - Compute - Target Variable (целевая переменная): x 01, Numeric Expression (числовое выражение):
NORMAL (2) + 10
это выражение вводим кнопками окна - ОК.- Change? - OK.
В первом столбце наблюдения получены. Повторяем, начиная с Transform, заменив х 01 на х 02; и так 9 раз (5 нажатий на 1 столбец). Матрица наблюдений получена.
б) Оценка средних.
В пакете статистики определяются по столбцам (переменным), поэтому выборки-строки преобразуем транспонированием в выборки-столбцы:
Data - Transpose...- все имена переменных переносим в правый список Variables (выделяем все, нажимаем кнопку-стрелку) - ОК.
Теперь имеется 50 столбцов - выборок по 10 строк - наблюдений. Первый столбец case - lbl можно удалить:
выделим его - Edit - Clear (или клавиша Delete).
Определим среднее по выборкам:
Statistics - Summarize - Descriptives...- перенесем имена всех столбцов в правый список, отметим Display labels (имена показывать) - Options...- отметим только Mean; îòìåòèì Display Order: Name (показывать по порядку) - Continue - OK.
В окне Output получаем столбец Mean результатов. Если в столбце есть пропуски или текст, удаляем лишние строки, чтобы столбец результатов состоял из 50 строк с числами.
Сохраним столбец результатов в буфере операцией Copy. Снова транспонируем матрицу (чтобы в дальнейшем не было пустых блоков). Получили 10 числовых столбцов и 50 строк (выборок).
Выделяем 1-й справа свободный столбец и с помощью Edit - Paste помещаем в него столбец средних. Присвоим ему имя as:
выделим его - Data - Define Variable - Name: as
в) Определение столбцов а1 и а2 левых и правых концов доверительных интервалов.
Пусть РД = 0.9, квантиль порядка (1 + РД )/2 = 0.95 есть fР = 1.645. Вычислим левые концы:
Transform - Compute - Target Variable: a1, Numeric Expression (по (5), учитывая, что = 2): as – 1.645 2/ SQRT(10).
Аналогично вычислим левые концы а2.
г) Результаты k = 50 испытаний доверительного интервала представим графически, предварительно образовав столбец а с истинным значением 10 параметра; затем:
Graphs - Line...- Multiple (несколько графиков), Values of individual cases - Define - Line Represent (представить линии): а, а1, а2 - ОК.
Наблюдаем график, из которого видно, сколько интервалов из 50 не содержат истинное значение. Записываем его; оно должно находиться приближенно в пределах 5 2 5 4. График распечатаем или сохраним: File - Save As...
д) Пусть РД = 0.99; тогда fР 2.57; если РД = 0.999, то fР 3.29. Повторим пп. в) и г) для этих значений РД . Убеждаемся, что с ростом РД число ошибок уменьшается, но ширина интервала увеличивается (чем надежнее гарантия, тем меньше она гарантирует).
Задание: провести аналогично k = 50 испытаний доверительного интервала (7) - (9) для случая неизвестной дисперсии.
ПРИЛОЖЕНИЕ 1. Методы построения оценок
Метод моментов
Пусть x1, ..., xn - n независимых наблюдений над случайная величиной с функцией распределения F (x/a), зависящей от параметра a (a1, ..., aR), nR; значение параметра требуется оценить по наблюдениям.