lr4 (543709), страница 2

Файл №543709 lr4 (Лабораторные по Теория вероятностей) 2 страницаlr4 (543709) страница 22015-08-16СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

где t2 - квантиль порядка 1- РД распределения хи-квадрат с n-1 степенями свободы.

Задание: определить верхние доверительные границы для а и с уровнем доверия РД = 0.95 .

1.4. Задание на самостоятельную работу

1) для заданной задачи построить оценку заданным методом (варианты заданий см. ниже);

2) построить доверительный интервал, основанный на этой оценке;

3) сгенерировать выборку заданного объема;

4) вычислить доверительный интервал.

Отчет по работе должен содержать:

постановки вопросов, формулы,

графики испытания доверительного интервала для 2-х случаев: с известной и неизвестной дисперсией (по п. 1.2),

таблицу доверительных интервалов для различных РД (по п. 1.3),

вывод формул для оценок и интервалов, сгенерированную выборку и вычисленный интервал (по п. 1.4) .

Варианты задач.

Задача1. Расстояние а до некоторого объекта измерялось n1 раз одним прибором и n2- вторым; результаты х1,…,хn1; y1,…,yn2. Оба прибора при каждом измерении дают независимые случайные ошибки, нормально распределенные со средним 0 и стандартными отклонениями 1 и 2 соответственно. Методом максимального правдоподобия построить оценку â для а и доверительный интервал с уровнем доверия РД .

Варианты исходных данных

¹

n1

n2

1, êì

2, êì

Ðä

a, êì

1

5

10

3

5

0.95

300

2

8

12

3

5

0.98

300

3

10

15

3

5

0.95

300

4

5

10

4

6

0.98

350

5

8

12

4

6

0.95

350

6

10

15

4

6

0.98

350

7

5

10

5

8

0.95

400

8

8

12

5

8

0.98

400

9

10

15

5

8

0.95

400

измерения получить моделированием с заданным параметром а.

Решение (без вывода). Оценка

, где с= ;

доверительный интервал

I=( , ),

где - квантиль порядка (1+РД)/2 распределения N(0,1).

Задача 2. Изготовлена большая партия из N=10000 приборов. Известно, что время безотказной работы случайно и распределено по показательному закону с плотностью

, x  0

С целью определения значения параметра а этой партии были поставлены на испытания n приборов; времена безотказной работы оказались равными х1,…,хn. Методом моментов построить оценку для а и доверительный интервал с уровнем доверия РД . Кроме того, построить доверительный интервал для числа М приборов, имеющих время безотказной работы менее 50 часов.

Варианты исходных данных

1

2

3

4

5

6

7

8

9

n

20

25

30

20

25

30

20

25

30

ÐД

0.95

0.99

0.95

0.99

0.95

0.99

0.95

0.99

0.95

à

300

400

500

300

400

500

300

400

500

измерения получить моделированием с заданным параметром а.

Решение (без вывода). Оценка

;

доверительный интервал для а

Ia = ( , ),

где t1=Q(2n, (1-РД)/2), t2=Q(2n, (1+РД)/2) - квантили распределения хи-квадрат с 2n степенями свободы; доверительный интервал для М

IM = ( N(1- exp(- )), N(1- exp(- )) ).

Çàäà÷à 3. Некоторое неизвестное расстояние а измерялось с аддитивной случайной ошибкой  , распределенной по закону Коши с плотностью

p( x ) = , -  < x < .

По результатам х1,…,хn независимых измерений методом порядковых статистик построить оценку для а и приближенный доверительный интервал с коэффициентом доверия РД .

Варианты исходных данных

1

2

3

4

5

6

7

8

9

n

30

40

50

30

40

50

30

40

50

b

3

4

5

6

3

4

5

6

3

ÐД

0.95

0.98

0.95

0.98

0.96

0.98

0.95

0.98

0.95

a

15

20

25

15

20

25

15

20

25

измерения получить моделированием с заданным параметром а.

Решение (без вывода).Оценкой для а является выборочная медиана - порядковая статистика с номером [n/2]+1

,

или

(у этих статистик асимптотические свойства одинаковы). Приближенный доверительный интервал, основанный на асимптотическом распределении выборочной р-квантили

I=( ),

где tp=Q((1+РД)/2) - квантиль порядка (1+РД)/2 распределения N(0,1).

Задача 4. В водоеме обитает некоторая биологическая популяция, состоящая из смеси особей двух возрастов. Длина особи - случайная величина, распределенная по нормальному закону N( ai, i2 ), где i=1,2 - индекс, относящийся к возрасту. С целью определения доли q особей 1-го возраста проведен отлов n особей и измерена их длина. По результатам х1,…,хn методом моментов построить оценку для q и приближенный доверительный интервал с уровнем доверия РД . Построить гистограмму наблюдений.

Варианты исходных данных

1

2

3

4

5

6

7

8

9

n

40

50

60

40

50

60

40

50

60

à1

5

6

5

6

5

6

5

6

5

à2

8

9

8

9

8

9

8

9

8

ÐÄ

0.95

0.95

0.98

0.95

0.95

0.98

0.95

0.95

0.98

q

0.5

0.4

0.3

0.5

0.4

0.3

0.5

0.4

0.3

Принять 1=1см, 2=1см. измерения получить моделированием с заданным значением q.

Решение (без вывода):

I = ( q1, q2 ),

Характеристики

Тип файла
Документ
Размер
383,5 Kb
Тип материала
Высшее учебное заведение

Список файлов лабораторной работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее