Теория вероятности (543705), страница 4
Текст из файла (страница 4)
10 В компьютерном классе института 7 IBM типа Pentium и 5 компьютеров других модификаций. Вероятность сбоя в работе в течение учебного занятия для Pentium равна 0.9, для других компьютеров - 0.7. Студент на занятии работает за произвольно выбранным компьютером. 1) Найти вероятность того, что в течение занятия его компьютер не “зависнет”. 2) На занятии компьютер дал сбой в работе, найти вероятность того, что студент работал на Pentiumе.
11)Найти вероятность того, что к первой наудачу извлеченной кости домино можно приставить и вторую.
12)В ящик, содержащий три одинаковых детали, брошена стандартная деталь, а затем извлечена одна деталь. Найти вероятность того, что извлечена стандартная деталь, если равновероятны все возможные предположения о числе стандартных деталей, первоначально находившихся в ящике.
13)Группе студентов для прохождения производственной практики выделено 30 мест: 15 – на «Азоте», 8 – на «Кванте», 7 – на «Арнесте». Какова вероятность того, что студент и студентка, которые дружат, будут направлены на одно предприятие, если руководитель практики ничего не знает об их отношениях?
14)Из колоды, содержащей 52 карты, наугад вынимают 4 карты. найдите вероятность того, что а) все эти карты разных мастей; б) эти карты одной масти; в) эти карты бубновой масти; г) две карты одной масти, другие две другой масти.
15)В сборной по футболу 7 игроков из «Спартака», 8 – из «Динамо», 6 – из «Локомотива» и 4 – из ЦСКА. Статистикой установлено, что вероятность забить гол в играх сборной для спартаковца составляет 0,5, для динамовца 0,4, для железнодорожника 0,35 и для армейца 0,3. В матче нашими футболистами забито 2 гола. Какова вероятность того, что один гол забил представитель «Спартака», другой – представитель «Локомотива»?
16)Какова вероятность того, что при n бросаниях игральной кости хотя бы один раз появится шестерка?
Формула Бернулли
Пусть проводится серия из n испытаний, в результате каждого из которых событие А может произойти или не произойти. Предполагаем, что вероятность p наступления события А в каждом испытании постоянна, т.е. не зависит ни от номера испытания, ни от результатов предыдущих испытаний.
Последовательность испытаний, удовлетворяющих указанному условию, называется последовательностью независимых испытаний (или схемой Бернулли).
Таким образом, в схеме Бернулли для каждого испытания имеется лишь два исхода:
1) событие А, P(A) = p; 2) событие , P(
) = q = 1 - p.
Вероятность Pn(k) того, что в серии из n испытаний в схеме Бернулли событие А наступит ровно k раз (безразлично, в какой последовательности), выражается формулой Бернулли
В некоторых задачах требуется определить вероятность того, что в n испытаниях событие А произойдет не менее k раз. Используя теорему сложения вероятностей и формулу Бернулли, искомую вероятность определяют по формуле:
Pn (k) + Pn (k+1) +…+ Pn (n).
Количество n испытаний, которое необходимо произвести для того, чтобы с вероятностью, не менее Р, можно было утверждать, что событие А произойдет хотя бы один раз, определяем по формуле:
Наивероятнейшее значение µ появлений события А в n испытаниях равно целой части числа (n +1)p, а если это число целое, то наивероятнейших значений два
µ1 = (n +1)p - 1, µ2 = (n+1)p.
Локальная теорема Лапласа
Формула Бернулли становится трудно применимой при больших n. Это связано с вычислением
Существует практически удобный способ вычисления вероятностей Pn(k) -приближенный, но достаточно точный при больших значениях n.
Теорема Лапласа. Пусть p - вероятность появления события А в одном испытании, причем 0 < p < 1. Тогда вероятность того, что в условиях схемы Бернулли в n испытаниях событие А наступит ровно k раз, приближенно выражается равенством
Pn (k)
(x),
где x =
,
(x) =
, q = 1 – p (1)
Формула (1) дает тем более точный результат, чем больше n.
Для функции (x) cоставлены таблицы, лишь для x ≥0, так как
(x) - четная функция, т. е.
(-x) =
(x). (См. приложения).
Интегральная теорема Лапласа
Во многих задачах требуется вычислить Pn(k1,k2) того, что в серии из n испытаний событие А произойдет не менее k1 и не более k2 раз. Вычисление этой вероятности с помощью формулы Бернулли при больших n весьма затруднительно.
Удобный приближенный способ вычисления вероятностей Pn(k1, k2) в схеме Бернулли дает интегральная теорема Лапласа.
Если вероятность наступления события А в каждом из n независимых испытаний постоянна и равна p (0 < p < 1), то имеет место приближенное неравенство
Pn (k1, k2)
, где где x1 =
, x2 =
(1)
Для вычисления вероятности Pn (k1, k2) формулу (1) представляют в виде:
Pn (k1, k2) = Ф(x1) – Ф(x2) (1`) , где
Ф(х)
, функция Лапласа, для которой составлены таблицы значений. Так как Ф(х) функция нечетная, т.е. Ф(-х) = -Ф(х), то таблицы составлены лишь для х ≥ 0. (См. приложения)
Замечание 1. Формула (1) (или (1`)) дает хорошие результаты при достаточно больших n.
Замечание 2. Вероятность того, что событие А наступит не менее k раз в n испытаниях можно вычислять по формуле (1`), полагая k1 = k, k2 = n.
Теорема Пуасона
Рассмотрим схему Бернулли с малой вероятностью p появления события А в одном испытании и с большим количеством n испытаний. Пусть при большом n малая вероятность p такова, что pn = λ , где λ - некоторое число. Вероятность Pn(k) в такой схеме Бернулли описывается теоремой Пуассона. Пусть n→∞, λ >0 постоянно и p = . Тогда в схеме Бернулли из n независимых испытаний, в каждом из которых вероятность наступления события А равна p, имеет место приближенное равенство:
(Таблица значений для формулы Пуассона приведена в Приложении).
Замечание. Формулу Пуассона можно применять в случаях, когда число n испытаний «велико», вероятность события p «мала», а λ = np «не мало и не велико».
Задачи
1 Вероятность сбоя в работе компьютера в одном сеансе работы равна 0.1. Найти вероятность двух сбоев в шести сеансах работы.
2 Вероятность появления события А в одном испытании равна 0.4. произведено 5 испытаний. Найти вероятность того, что событие А наступит не более одного раза.
3 Фирма выпускает изделия, из которых 80% высшего качества. Какова вероятность при отборе 100 изделий обнаружить ровно 18 изделий высшего качества?
4 Хлебокомбинат выпускает 90% продукции первого сорта. Какова вероятность того, что из 400 изделий хлебокомбината первосортных окажется не менее 380?
5 Что вероятнее выиграть у равносильного соперника (ничьи исключены): три партии из четырех или пять партий из восьми?
6 Рекламное агентство гарантирует, что в некоей лотерее 2% билетов выигрышные. Вы приобрели 100 лотерейных билетов. Что вероятнее, что четыре билета окажутся выигрышными или выигрышных не будет ни одного.
7 Вероятность появления события в каждом испытании равна 0.25. Найти вероятность того, что в 300 испытаниях событие наступит от 50 до 80 раз.
8 Всхожесть семян новой культуры 85%. На опытном участке посеяли 500 семян. Найти вероятность того, что прорастут от 400 до 450 семян.
9 Вероятность появления события А в одном испытании равна 0.4. произведено 400 испытаний. Найти вероятность того, что событие А наступит не менее 190 и не более 215 раз.
10 Типография гарантирует вероятность брака переплета книг 0.0001. Книга издана тиражом 25000 экземпляров. Какова вероятность того, что в этом тираже только одна книга имеет брак переплета?
11 Вероятность появления события А в одном испытании равна 0.9. произведено 100 испытаний. Найти вероятность того, что событие А наступит не менее 80 раз.
12Известно, что в данном селе 80% семей имеют телевизоры. Найти вероятность того, что среди 6 случайно отобранных семей 2 окажутся без телевизора.
13В квартире 8 электролампочек. Вероятность работы лампочки в течение года равна 0,9. Какова вероятность того, что в течение года придется заменить не менее половины лампочек.?
14При проведении некоторого испытания вероятность появления некоторого результата 0,01. сколько раз его нужно провести, чтобы с вероятностью 0,5 можно было ожидать хотя бы одного появления этого результата?
15Какова вероятность того, что среди наугад 500 выбранных человек двое родились 8-го марта?
16Найти такое число k, чтобы с вероятность 0,9, можно было утверждать, что среди 900 новорожденных более k мальчиков. Вероятность рождения мальчика 0,515.
Дискретные и непрерывные случайные величины
Случайной величиной называется величина, которая в результате испытания приобретает то или иное числовое значение из некоторого множества. При этом заранее неизвестно, какое значение имела случайная величина примет в результате опыта.
Случайная величина называется дискретной, если все ее возможные значения изолированы друг от друга и их можно занумеровать.