Главная » Просмотр файлов » Теория вероятности

Теория вероятности (543705), страница 4

Файл №543705 Теория вероятности (Теория вероятности) 4 страницаТеория вероятности (543705) страница 42015-08-16СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

10 В компьютерном классе института 7 IBM типа Pentium и 5 компьютеров других модификаций. Вероятность сбоя в работе в течение учебного занятия для Pentium равна 0.9, для других компьютеров - 0.7. Студент на занятии работает за произвольно выбранным компьютером. 1) Найти вероятность того, что в течение занятия его компьютер не “зависнет”. 2) На занятии компьютер дал сбой в работе, найти вероятность того, что студент работал на Pentiumе.

11)Найти вероятность того, что к первой наудачу извлеченной кости домино можно приставить и вторую.

12)В ящик, содержащий три одинаковых детали, брошена стандартная деталь, а затем извлечена одна деталь. Найти вероятность того, что извлечена стандартная деталь, если равновероятны все возможные предположения о числе стандартных деталей, первоначально находившихся в ящике.

13)Группе студентов для прохождения производственной практики выделено 30 мест: 15 – на «Азоте», 8 – на «Кванте», 7 – на «Арнесте». Какова вероятность того, что студент и студентка, которые дружат, будут направлены на одно предприятие, если руководитель практики ничего не знает об их отношениях?

14)Из колоды, содержащей 52 карты, наугад вынимают 4 карты. найдите вероятность того, что а) все эти карты разных мастей; б) эти карты одной масти; в) эти карты бубновой масти; г) две карты одной масти, другие две другой масти.

15)В сборной по футболу 7 игроков из «Спартака», 8 – из «Динамо», 6 – из «Локомотива» и 4 – из ЦСКА. Статистикой установлено, что вероятность забить гол в играх сборной для спартаковца составляет 0,5, для динамовца 0,4, для железнодорожника 0,35 и для армейца 0,3. В матче нашими футболистами забито 2 гола. Какова вероятность того, что один гол забил представитель «Спартака», другой – представитель «Локомотива»?

16)Какова вероятность того, что при n бросаниях игральной кости хотя бы один раз появится шестерка?

Формула Бернулли

Пусть проводится серия из n испытаний, в результате каждого из которых событие А может произойти или не произойти. Предполагаем, что вероятность p наступления события А в каждом испытании постоянна, т.е. не зависит ни от номера испытания, ни от результатов предыдущих испытаний.

Последовательность испытаний, удовлетворяющих указанному условию, называется последовательностью независимых испытаний (или схемой Бернулли).

Таким образом, в схеме Бернулли для каждого испытания имеется лишь два исхода:

1) событие А, P(A) = p; 2) событие , P( ) = q = 1 - p.

Вероятность Pn(k) того, что в серии из n испытаний в схеме Бернулли событие А наступит ровно k раз (безразлично, в какой последовательности), выражается формулой Бернулли

Pn (k) =

В некоторых задачах требуется определить вероятность того, что в n испытаниях событие А произойдет не менее k раз. Используя теорему сложения вероятностей и формулу Бернулли, искомую вероятность определяют по формуле:

Pn (k) + Pn (k+1) +…+ Pn (n).

Количество n испытаний, которое необходимо произвести для того, чтобы с вероятностью, не менее Р, можно было утверждать, что событие А произойдет хотя бы один раз, определяем по формуле:

n ≥

Наивероятнейшее значение µ появлений события А в n испытаниях равно целой части числа (n +1)p, а если это число целое, то наивероятнейших значений два

µ1 = (n +1)p - 1, µ2 = (n+1)p.

Локальная теорема Лапласа

Формула Бернулли становится трудно применимой при больших n. Это связано с вычислением

Существует практически удобный способ вычисления вероятностей Pn(k) -приближенный, но достаточно точный при больших значениях n.

Теорема Лапласа. Пусть p - вероятность появления события А в одном испытании, причем 0 < p < 1. Тогда вероятность того, что в условиях схемы Бернулли в n испытаниях событие А наступит ровно k раз, приближенно выражается равенством

Pn (k) (x), где x = , (x) = , q = 1 – p (1)

Формула (1) дает тем более точный результат, чем больше n.

Для функции (x) cоставлены таблицы, лишь для x ≥0, так как (x) - четная функция, т. е. (-x) = (x). (См. приложения).

Интегральная теорема Лапласа

Во многих задачах требуется вычислить Pn(k1,k2) того, что в серии из n испытаний событие А произойдет не менее k1 и не более k2 раз. Вычисление этой вероятности с помощью формулы Бернулли при больших n весьма затруднительно.

Удобный приближенный способ вычисления вероятностей Pn(k1, k2) в схеме Бернулли дает интегральная теорема Лапласа.

Если вероятность наступления события А в каждом из n независимых испытаний постоянна и равна p (0 < p < 1), то имеет место приближенное неравенство

Pn (k1, k2) , где где x1 = , x2 = (1)

Для вычисления вероятности Pn (k1, k2) формулу (1) представляют в виде:

Pn (k1, k2) = Ф(x1) – Ф(x2) (1`) , где

Ф(х) , функция Лапласа, для которой составлены таблицы значений. Так как Ф(х) функция нечетная, т.е. Ф(-х) = -Ф(х), то таблицы составлены лишь для х ≥ 0. (См. приложения)

Замечание 1. Формула (1) (или (1`)) дает хорошие результаты при достаточно больших n.

Замечание 2. Вероятность того, что событие А наступит не менее k раз в n испытаниях можно вычислять по формуле (1`), полагая k1 = k, k2 = n.

Теорема Пуасона

Рассмотрим схему Бернулли с малой вероятностью p появления события А в одном испытании и с большим количеством n испытаний. Пусть при большом n малая вероятность p такова, что pn = λ , где λ - некоторое число. Вероятность Pn(k) в такой схеме Бернулли описывается теоремой Пуассона. Пусть n→∞, λ >0 постоянно и p = . Тогда в схеме Бернулли из n независимых испытаний, в каждом из которых вероятность наступления события А равна p, имеет место приближенное равенство:

Pn (k) (формула Пуассона).

(Таблица значений для формулы Пуассона приведена в Приложении).

Замечание. Формулу Пуассона можно применять в случаях, когда число n испытаний «велико», вероятность события p «мала», а λ = np «не мало и не велико».

Задачи

1 Вероятность сбоя в работе компьютера в одном сеансе работы равна 0.1. Найти вероятность двух сбоев в шести сеансах работы.

2 Вероятность появления события А в одном испытании равна 0.4. произведено 5 испытаний. Найти вероятность того, что событие А наступит не более одного раза.

3 Фирма выпускает изделия, из которых 80% высшего качества. Какова вероятность при отборе 100 изделий обнаружить ровно 18 изделий высшего качества?

4 Хлебокомбинат выпускает 90% продукции первого сорта. Какова вероятность того, что из 400 изделий хлебокомбината первосортных окажется не менее 380?

5 Что вероятнее выиграть у равносильного соперника (ничьи исключены): три партии из четырех или пять партий из восьми?

6 Рекламное агентство гарантирует, что в некоей лотерее 2% билетов выигрышные. Вы приобрели 100 лотерейных билетов. Что вероятнее, что четыре билета окажутся выигрышными или выигрышных не будет ни одного.

7 Вероятность появления события в каждом испытании равна 0.25. Найти вероятность того, что в 300 испытаниях событие наступит от 50 до 80 раз.

8 Всхожесть семян новой культуры 85%. На опытном участке посеяли 500 семян. Найти вероятность того, что прорастут от 400 до 450 семян.

9 Вероятность появления события А в одном испытании равна 0.4. произведено 400 испытаний. Найти вероятность того, что событие А наступит не менее 190 и не более 215 раз.

10 Типография гарантирует вероятность брака переплета книг 0.0001. Книга издана тиражом 25000 экземпляров. Какова вероятность того, что в этом тираже только одна книга имеет брак переплета?

11 Вероятность появления события А в одном испытании равна 0.9. произведено 100 испытаний. Найти вероятность того, что событие А наступит не менее 80 раз.

12Известно, что в данном селе 80% семей имеют телевизоры. Найти вероятность того, что среди 6 случайно отобранных семей 2 окажутся без телевизора.

13В квартире 8 электролампочек. Вероятность работы лампочки в течение года равна 0,9. Какова вероятность того, что в течение года придется заменить не менее половины лампочек.?

14При проведении некоторого испытания вероятность появления некоторого результата 0,01. сколько раз его нужно провести, чтобы с вероятностью 0,5 можно было ожидать хотя бы одного появления этого результата?

15Какова вероятность того, что среди наугад 500 выбранных человек двое родились 8-го марта?

16Найти такое число k, чтобы с вероятность 0,9, можно было утверждать, что среди 900 новорожденных более k мальчиков. Вероятность рождения мальчика 0,515.

Дискретные и непрерывные случайные величины

Случайной величиной называется величина, которая в результате испытания приобретает то или иное числовое значение из некоторого множества. При этом заранее неизвестно, какое значение имела случайная величина примет в результате опыта.

Случайная величина называется дискретной, если все ее возможные значения изолированы друг от друга и их можно занумеровать.

Характеристики

Тип файла
Документ
Размер
570,5 Kb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее