Главная » Просмотр файлов » Математическая статистика (DOC)

Математическая статистика (DOC) (543619), страница 5

Файл №543619 Математическая статистика (DOC) (Математическая статистика (DOC)) 5 страницаМатематическая статистика (DOC) (543619) страница 52015-08-16СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

10) Инженер по контролю качества проверяет среднее время горения нового вида электроламп. Для проверки в порядке случайной выборки было отобрано 100 ламп, среднее время горения которых составило 1075 часов. Среднее квадратическое отклонение времени горения составляет 100 часов. Используя уровень значимости α = 0.05, проверьте гипотезу о том, что среднее время горения ламп – более 1000 часов.

11) Компания, выпускающая в продажу новый сорт кофе, провела проверку вкусов покупателей по случайной выборке из 400 человек и выяснила, что 220 из них предпочли новый сорт всем остальным. Проверьте на уровне значимости α = 0,01 гипотезу о том, что по крайней мере 52% потребителей предпочтут новый сорт кофе.

12) Страховая компания изучает вероятность ДТП для подростков, имеющих мотоциклы. За прошедший год проведена случайная выборка 2000 страховых полисов подростков-мотоциклистов и выявлено, что 15 из них попадали в ДТП и предъявили компании требование о компенсации за ущерб. Может ли аналитик компании отклонить гипотезу о том, что менее 1% всех подростков – мотоциклистов попадали в ДТП в прошлом году. Принять уровень значимости α = 0,05.

13) Новое лекарство против гриппа должно пройти экспериментальную проверку для выяснения побочных эффектов. В ходе эксперимента лекарство принимали 4000 мужчин и 5000 женщин. Результаты показали, что 60 мужчин и 100 женщин испытывали побочные эффекты при приёме нового медикамента. Можно ли на основании эксперимента утверждать, что побочные эффекты нового лекарства у женщин проявляются в большей степени, чем у мужчин? Уровень значимости α = 0,05.

14) Производитель микрокалькуляторов утверждает, что 95% выпускаемых изделий не имеют дефектов. Случайная выборка из 100 микрокалькуляторов показала, что только 92 из них без дефектов. Проверьте справедливость утверждения производителя на уровне значимости α = 0,05.

15) В 2002 году годовой оборот 4 бирж в регионе Ставропольского края составил 12·104 у.е.; в Краснодарском крае годовой оборот 5 бирж - 125·103 у.е. Исправленная выборочная дисперсия оборота в регионе Ставропольского края равна 12·103 (у.е.)2, в Краснодарском крае - 2·104 (у.е.)2 . Можно ли на уровне значимости α = 0,05 утверждать, что средний оборот бирж в регионе Ставропольского края больше чем в Краснодарском крае.

16) Производитель нового типа аспирина утверждает, что он снимает головную боль за 30 мин. Случайная выборка 100 человек страдающих головными болями, показала, что новый тип аспирина снимает головную боль за 28,6 мин при среднем квадратическом отклонении 4,2 мин. Проверьте на уровне значимости α = 0,05 справедливость утверждения производителя.

17) Компания по производству безалкогольных напитков выпускает на рынок новый напиток. Компания хотела бы быть уверенной, что не менее 70% её потребителей предпочтут новый напиток. Этот напиток был предложен на пробу 2000 человек, и 1422 из них сказали, что он вкуснее старого. Может ли компания отклонить предположение о том, что только 70% всех её потребителей предпочтут новый напиток старому. Принять уровень значимости α = 0,05

18) Владелец фирмы считает, что добиться более высокой прибыли ему помешала неравномерность поставок по месяцам года. Поставщик утверждает, что поставки были не так уж равномерны. Распределение поставок имеет следующий вид:

Месяц

1

2

3

4

5

6

7

8

9

10

11

12

Объём поставок

19

23

26

18

20

20

20

20

32

27

35

40

При α = 0,05 определите кто прав владелец фирмы или поставщик?

Корреляционная зависимость.

Дана система случайных величин (Х;У). Пусть в результате n испытаний получено n точек (х11); (х22)…(хn;yn), Необходимо вычислить коэффициент корреляции этой системы случайных величин.

Приняв во внимание закон больших чисел, при достаточно большом математическом ожидании получим следующие приближённые равенства:

. Отсюда можно найти коэффициент корреляции по формуле: .

Если , то связь между случайными величинами Х и У достаточна устойчива. Если связь между Х и У установлена, то линейное приближение от х даётся формулой линейной регрессии:

Линейное приближение от у даётся формулой линейной регрессии Прямые различны.

Для построения уравнения линейной регрессии нужно:

  • по исходной таблице значений (Х;У) вычислить

  • проверить гипотезу о существовании устойчивости между Х и У;

  • составить уравнение обеих линий регрессии и изобразить графики этих уравнений.

Способ наименьших квадратов.

Этот способ заключается в отыскании вида и значения параметров функциональной зависимости у = f(x), связывающий зафиксированные значения переменных х и у, подчиняются требованию наилучшего приближения значений функции к данным наблюдения. Этой цели соответствует подчинение искомой функции такому условию, чтобы сумма квадратов отклонений каждого значения такой функции f(x) от соответствующего значения х была наименьшей.

Пусть имеем следующие данные наблюдений:

Х

Х1

х2

хn

У

У1

у3

yn

Это значит, что сумма [f(x1)-y1]2+ [f(x2) – y2]2 +…+[f(xn) – yn]2 должна удовлетворять условию минимума функции нескольких независимых переменных; или ими оказываются параметры, т.е. неизвестные коэффициенты искомой функции у = f(х), которая может иметь вид: f(х) = ах + b отыскиваются из нормальной системы

откуда легко получить ;

Для параболической функции F(x) = ах2 +bх + с коэффициенты находятся из системы линейных уравнений:

Задачи

1) Туристическая компания предлагает места в гостиницах приморского курорта. Менеджера компании интересует, насколько возрастает привлекательность компании в зависимости от её расстояния до пляжа. С этой целью по 14 гостиницам города была выяснена среднегодовая наполняемость номеров и расстояние в км. до пляжа.

Расстояние

0,1

0,1

0,2

0,3

0,4

0,4

0,5

0,6

0,7

0,7

0,8

0,8

0,9

0,9

Наполняемость, %

92

95

96

90

89

86

90

83

85

80

78

76

72

75

Постройте график исходных данных и определите по нему характер зависимости. Рассчитайте выборочный коэффициент линейной корреляции Пирсона, проверьте его значимость при α = 0,05. Постройте уравнение регрессии и дайте интерпретацию полученных результатов.

2) Компанию по прокату автомобилей интересует зависимость между пробегом автомобилей (Х) и стоимостью ежемесячного тех. обслуживания (Y). Для выяснения характера этой связи было отобрано 15 автомобилей.

Х

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Y

13

16

15

20

19

21

26

24

30

32

30

35

34

40

39

Постройте график исходных данных и определите по нему характер зависимости. Рассчитайте выборочный коэффициент линейной корреляции Пирсона, проверьте его значимость при α = 0,05. Постройте уравнение регрессии и дайте интерпретацию полученных результатов.

3) Врач исследователь выясняет зависимость площади поражённой части лёгких у людей, заболевших эмфиземой лёгких, от числа лет курения. Статистические данные, собранные им в некоторой области имеют следующий вид:

Число лет курения

25

36

22

15

48

39

42

31

28

33

Площадь поражённой части лёгкого, %

55

60

50

30

75

70

70

55

30

35

Постройте график исходных данных и определите по нему характер зависимости. Рассчитайте выборочный коэффициент линейной корреляции Пирсона, проверьте его значимость при α = 0,05. Постройте уравнение регрессии и дайте интерпретацию полученных результатов. Если человек курил 30 лет, то сделайте прогноз о степени поражения лёгких у случайно выбранного пациента

Характеристики

Тип файла
Документ
Размер
500,5 Kb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее