Главная » Просмотр файлов » Математическая статистика (DOC)

Математическая статистика (DOC) (543619), страница 3

Файл №543619 Математическая статистика (DOC) (Математическая статистика (DOC)) 3 страницаМатематическая статистика (DOC) (543619) страница 32015-08-16СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Так как выборочная совокупность это часть генеральной совокупности, то естественно, что выборочные характеристики не будут точно совпадать с соответствующими генеральными. Ошибка может быть представлена как разность между генеральными и выборочными характеристиками изучаемой совокупности: , либо .

Применительно к выборочному методу из теоремы Чебышева следует, что с вероятностью, сколь угодно близкой к единице, можно утверждать, что при достаточно большом объёме выборки и ограниченной дисперсии генеральной совокупности разность между выборочной средней и генеральной средней будет сколь угодно мала.

где - средняя по совокупности выбранных единиц; - средняя по генеральной совокупности; - среднее квадратическое отклонение в генеральной совокупности.

О величине расхождения между параметром и статистикой

можно судить лишь с определённой вероятностью, от которой зависит величина t.

Средняя ошибка выборки . Согласно центральной предельной теореме Ляпунова, выборочные распределения статистик (при n 30) будут иметь нормальное распределение независимо от того, какое распределение имеет генеральная совокупность. Следовательно,

,

где - функция Лапласа.

В зависимости от способа отбора средняя ошибка выборки определяется по разному

Собственно случайный отбор

повторный

бесповторный

Для средней

Для доли

Здесь - выборочная дисперсия значений признака; - выборочная дисперсия доли значений признака; n – объём выборки; N – объём генеральной совокупности; - доля обследованной совокупности; (1 - ) – поправка на бесповторность отбора.

Формулы расчёта необходимой численности выборки для собственно случайного отбора определяются в таблице.

Собственно случайный отбор

повторный

бесповторный

Для средней

Для доли

Интервальное оценивание

Интервальной оценкой называют оценку, которая определяется двумя числами – концами интервала, который с определённой вероятностью накрывает неизвестный параметр генеральной совокупности. Интервал, содержащий оцениваемый параметр генеральной совокупности, называют доверительным интервалом. Для его определения вычисляется предельная ошибка выборки Δ.

С помощью доверительного интервала можно оценивать различные параметры генеральной совокупности.

Для оценки математического ожидания а нормально распределённого количественного признака Х по выборочной средней при известном среднем квадратическом отклонении σ генеральной совокупности при n 30 и собственно – случайном повторном отборе формула имеет вид

,

где t определяется по таблицам функции Лапласа из соотношения 2Ф0(t) = γ;

Для оценки математического ожидания а нормально распределённого количественного признака Х по выборочной средней при известном среднем квадратическом отклонении σ генеральной совокупности при n 30 и собственно – случайном бесповторном отборе формула примет вид

;

Для оценки математического ожидания а нормально распределённого количественного признака Х по выборочной средней при неизвестном среднем квадратическом отклонении σ генеральной совокупности при n<30 и собственно – случайном повторном отборе формула будет иметь вид

,

где t определяется по таблицам функции Стьюдента по уровню значимости α = 1 – γ и числу степеней свободы k = n – 1; s – исправленное выборочное среднее квадратическое отклонение; n объём выборки.

Для оценки математического ожидания а нормально распределённого количественного признака Х по выборочной средней при неизвестном среднем квадратическом отклонении σ генеральной совокупности при n<30 и собственно – случайном бесповторном отборе формула примет вид

;

Для оценки генеральной доли р нормально распределённого количественного признака по выборочной доле при n 30 и собственно – случайном повторном отборе формула имеет вид

,

где t определяется по таблицам функции Лапласа из соотношения 2Ф0(t) = γ; ω – выборочная доля; n – объём выборки

.

Для оценки генеральной доли р нормально распределённого количественного признака по выборочной доле при n 30 и собственно – случайном бесповторном отборе формула примет вид

; .

Задачи по теме «Статистическое оценивание».

1) С помощью собственно – случайного повторного отбора фирма провела обследование 900 своих служащих. Средний стаж работы в фирме равен 8,7 года, а среднее квадратическое отклонение – 2,7 года. Среди обследованных оказалось 270 женщин. Считая стаж работы служащих распределённым по нормальному закону определите: а) с вероятностью 0,95 доверительный интервал, в котором окажется средний стаж работы всех служащих фирмы; б) с вероятностью 0.9 доверительный интервал, накрывающий неизвестную долю женщин во всём коллективе фирмы.

2) Владелец автостоянки опасается обмана со стороны служащих. В течении года владельцем автостоянки проведено 40 проверок. По данным проверок среднее число автомобилей, оставляемых на ночь на охрану, составило 400 единиц, а стандартное отклонение их числа – 10 автомобилей. Считая отбор собственно случайным, с вероятностью 0,99 оцените с помощью доверительного интервала истинное среднее число автомобилей, оставляемых на ночь. Обоснованы ли опасения владельца стоянки, если по отчётности охранников среднее число автомобилей составляет 395 автомобилей.

3) В 24 из 40 проверок число автомобилей на автостоянке не превышало 400 единиц. С вероятностью 0,98 найдите доверительный интервал для оценки истинной доли дней в течении года, когда число оставляемых на стоянке автомобилей не превышало 400 единиц.

4) Служба контроля Энергосбыта провела выборочную проверку расхода электроэнергии жителями одного из домов. С помощью собственно – случайного отбора выбрано 10 квартир и определён расход электроэнергии в течении месяцев: 125; 78; 102; 140; 90; 45; 50; 125; 115; 112. С вероятностью 0. 95 определите доверительный интервал для оценки среднего расхода электроэнергии на 1 квартиру во всём доме при условии, что в доме 70 квартир, а отбор был: а) повторным; б) бесповторным.

5) С целью изучения размеров выручки киосков была произведена 10% -ая случайная бесповторная выборка из 1000 киосков города. В результате были получены данные о средней выручке составившие 500 у.е. В каких пределах с доверительной вероятностью 0,95 может находиться средняя дневная выручка, если среднее квадратическое отклонение составило 150 у. е.?

6) Фирма торгующая компьютерами собирает информацию о состоянии местного компьютерного рынка. С этой целью из 8 746 лиц в возрасте 18 лет и старше, проживающих в этом городе, отобрано 500 человек. Среди них оказалось 29 человек, планирующих приобрести компьютер в новом году. Оцените долю лиц в генеральной совокупности в возрасте 18 лет и старше, планирующих приобрести компьютер в новом году, если α = 0, 05

7) Для оценки числа безработных среди рабочих в порядке случайной повторной выборки отобраны 400 человек. 25 из них оказались безработными. Используя 95% доверительный интервал, оцените истинные размеры безработицы.

8) Туристическое агентство утверждает, что для черноморского курорта характерна идеальная погода со среднегодовой температурой 200С. Пусть случайно отобраны 35 дней в году. Какова вероятность того, что отклонение средней температуры за отобранные дни от среднегодовой температуры не превысит по абсолютной величине 20С, если температура воздуха распределена по нормальному закону, а стандартное отклонение дневной температуры составляет 40С ?

9) В целях изучения среднедушевого дохода семей города Невинномысска, была произведена 1%-я повторная выборка из 30 тыс. семей. По результатам обследования среднедушевой доход семьи в месяц составил 1700 руб. со средним квадратическим отклонением 150 руб. С вероятностью 0,95 найдите доверительный интервал, в котором находится величина среднедушевого дохода всех семей города.

10) Выборочные обследования малых предприятий города показали, что 95% малых предприятий нерентабельны. Приняв доверительную вероятность равной 0,954, определите, в каких границах находится доля нерентабельных предприятий, если в выборку попали 100 предприятий.

11) Для изучения демографических характеристик населения выборочно обследовано 300 семей города Невинномысска. Оказалось, что среди обследованных семей 15% состоят из 2 человек. В каких пределах находится в генеральной совокупности доля семей, состоящих из 2 человек, если принять доверительную вероятность равной 0,95?

12) По данным выборочного обследования в 2003 году прожиточный минимум населения Северо-Кавказского региона составил в среднем на душу населения 1600 руб. в месяц. Каким должен был быть минимально необходимый объём выборки, чтобы с вероятностью 0,997 можно было утверждать, что этот показатель уровня жизни населения в выборке отличается от своего значения в генеральной совокупности не более чем на 100 рублей, если среднее квадратическое отклонение принять равным 300 рублей.

Характеристики

Тип файла
Документ
Размер
500,5 Kb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6549
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее