Modelirovanie_otvety_na_ekzamen (538755)
Текст из файла
Моделирование систем
-
Что мы называем моделью?
Модель — описание объекта (предмета, процесса или явления) на каком-либо формализованном языке, составленное с целью изучения его свойств. Такое описание особенно полезно в случаях, когда исследование самого объекта затруднено или физически невозможно. Чаще всего в качестве модели выступает другой материальный или мысленно представляемый объект, замещающий в процессе исследования объект-оригинал. Соответствие свойств модели исходному объекту характеризуется адекватностью. Процесс построения и исследования модели называется моделированием.
Типы моделей:
А) Предметные - обычно являются уменьшенной копией оригинала (Глобус как модель Земли, игрушечный автомобиль как модель настоящего)
Информационные
Б) Являются описанием объекта естественным языком (вербальная или словесная модель) и формальными системами представления информации (математические, программные и др. модели)
Виды моделей:
2 Виды моделей
2.1 Статические
2.2 Динамические
2.3 Функциальные
2.4 Концептуальные
2.5 Топологические
2.6 Логико-лингвистические
2.7 Семантические
2.8 Теоретико-множественные
2.9 Физические
2.10 Экономические
2.11 Математические
-
Что собой представляет моделирование?
Моделирование — исследование объектов познания на их моделях; построение и изучение моделей реально существующих предметов, процессов или явлений с целью получения объяснений этих явлений, а также для предсказания явлений, интересующих исследователя.
Процесс моделирования включает три элемента:
субъект (исследователь),
объект исследования,
модель, определяющую (отражающую) отношения познающего субъекта и познаваемого объекта.
Первый этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обусловливаются тем, что модель отображает (воспроизводит, имитирует) какие-либо существенные черты объекта-оригинала. Любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько «специализированных» моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.
На втором этапе модель выступает как самостоятельный объект исследования. Одной из форм такого исследования является проведение «модельных» экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее «поведении». Конечным результатом этого этапа является множество (совокупность) знаний о модели.
На третьем этапе осуществляется перенос знаний с модели на оригинал — формирование множества знаний. Одновременно происходит переход с «языка» модели на «язык» оригинала. Процесс переноса знаний проводится по определенным правилам. Знания о модели должны быть скорректированы с учетом тех свойств объекта-оригинала, которые не нашли отражения или были изменены при построении модели.
Четвертый этап — практическая проверка получаемых с помощью моделей знаний и их использование для построения обобщающей теории объекта, его преобразования или управления им.
Моделирование — циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта или ошибками в построении модели, можно исправить в последующих циклах.
-
Что собой представляет физическая модель?
Физическая модель — это модель, создаваемая путем замены объектов моделирующими устройствами, которые имитируют определённые характеристики либо свойства этих объектов. При этом моделирующее устройство имеет ту же качественную природу, что и моделируемый объект.
Физические модели используют эффект масштаба в случае возможности пропорционального применения всего комплекса изучаемых свойств.
Физическая модель представляет собой аналоговую модель, в которой между параметрами объекта и модели одинаковой физической природы существует однозначное соответствие. В этом случае элементом системы ставятся в соответствие физические эквиваленты, воспроизводящие структуру, основные свойства и соотношения изучаемого объекта. При физическом моделировании, основой которого является теория подобия, сохраняются особенности проведения эксперимента в натуре с соблюдением оптимального диапазона изменения соответствующих физических параметров.
Простейшей физической моделью в классической механике является материальная точка.
-
Что собой представляет математическая модель?
Математическая м. – представляет собой совокупность математических структур, описывающих оригинал с интересующей исследователя стороны.
Математической моделью называется совокупность математических соотношений, уравнений, неравенств и т.п., описывающих основные закономерности, присущие изучаемому процессу, объекту или системе
-
Что собой представляет непрерывная модель?
Непрерывная модель – представляет собой математические структуры, отражающие (непрерывное) поведение параметров как относительно друг друга, так и во времени.
-
Что собой представляет дискретная модель?
Дискретная м. – отражает объект с установленной степенью дискретизации, удобной для программирования на цифровой ЭВМ. В основе таких моделей лежит булева алгебра (алгебра логики).
-
Что собой представляет стохастическая модель?
Стохастические м. – это модели, составленные на основе теории вероятности и отражающие поведение оригинала с достаточной степенью вероятности.
-
Что собой представляет детерминированная модель?
Детерминированные м. – м., составленные на основе физических законов. Такие модели однозначно описывают поведение системы при изменении тех или иных факторов.
-
Что собой представляет статическая модель?
Статическая м. – м., отражающая объект в установившемся состоянии без влияния временных параметров.
-
Что собой представляет динамическая модель?
Динамическая м. – м., которые отражают поведение объекта во времени.
-
Что собой представляет индуктивный подход к решению задачи составления модели?
Индуктивный подход характеризуется тем, что исследование объекта осуществляется «снизу вверх», то есть от простого к сложному. Сначала моделируются какие-то элементарные процессы, которые в дальнейшем объединяются в группы в зависимости от поставленной цели, при этом совершенно не учитывается влияние внешней среды. Рисунок.
-
Что собой представляет системный подход к решению задачи составления модели?
Системный подход предусматривает последовательный переход от общего к частному, когда в основе рассмотрения лежит цель. Причем, исследуемый объект выделяется из окружающей среды.
-
Когда используется теория подобия для решения задачи составления модели?
Подобие физических процессов и систем широко используется в технике для исследования методом моделирования. В тех случаях когда математическое решение задачи затруднено, а то и попросту невозможно, вполне естественным является обращение к экспериментальному исследованию на моделях с последующим перерасчетом полученных результатов на натуру, которая явилась прототипом модели. При этом модель и натура должны находиться между собой в отношениях подобия.
рассмотрим классический пример о движении математического маятника.
Математический маятник (рис. 1) представляет собой тяжелую материальную точку, подвешенную на невесомой и нерастяжимой нити, которая закреплена другим своим концом неподвижно. Совокупность возможных движений мы ограничим условием, что движения маятника плоские.
Рис. 1. Математический маятник.
Введем обозначения: l — длина маятника, φ — угол между нитью и вертикалью, t — время, m — масса груза и N — натяжение нити. Если пренебречь силами сопротивления, то задача о движении маятника приводится к решению уравнений
с начальным условием
т. е. за начальный момент времени принят тот момент, когда маятник отклонен на угол φ0, а скорость равна нулю.
Из уравнений (1), (2) и начального условия очевидно, что в качестве определяющих параметров можно взять следующую систему:
t, l, g, m, φ0.
Числовые значения всех остальных величин определяются полностью значениями этих параметров. Следовательно, мы можем написать
φ = φ (t, φ0, l, g, m), N=mgf(t, φ0, l, g, m) (3)
где φ и f – безразмерные величины.
Числовые значения функций φ и f не должны зависеть от системы единиц измерения. Вид этих функций можно определить либо решая уравнения (1) и (2), либо экспериментальным способом.
Из общих соображений, изложенных выше, вытекает, что пять аргументов функций φ и f можно свести только к двум аргументам, которые представляют собой безразмерные комбинации, составленные из t, l, g, m и φ0, так как имеются три независимые единицы измерения.
Из величин t, l, g, m и φ0 можно составить две независимые безразмерные комбинации
Все другие безразмерные комбинации, составленные из t, l, g, m и φ0 или вообще из любых величин, определяемых этими параметрами, будут функциями комбинаций (4). Следовательно, можно написать
Формулы (5), полученные с помощью метода размерности, показывают, что закон движения не зависит от массы груза, а натяжение нити прямо пропорционально массе груза. Эти выводы вытекают также непосредственно из уравнений (1) и (2). Величину можно рассматривать как время, выраженное в специальной системе единиц измерения, в которой длина маятника и ускорение силы тяжести приняты равными единице.
Обозначим через Г какой-нибудь характерный промежуток времени, например время движения маятника между крайним и вертикальным положениями или между двумя одинаковыми фазами, т. е. период колебания, и т. д. (существование периодического движения можно принять как гипотезу или как результат, известный из дополнительных данных). Имеем
функция f2 представляет собой безразмерную величину, а так как из l, g и m нельзя составить безразмерную комбинацию, то очевидно, что функция f2 не зависит от l, g и m. Следовательно,
Формула (6) устанавливает зависимость времени Г от длины маятника. Получить вид функции f2(φ0) с помощью теории размерности нельзя. Определение f2(φ0) необходимо произвести либо теоретически, на основании уравнения (1), либо экспериментально.
Формулу (6) можно получить непосредственно из соотношений (5'). В самом деле, для периода колебаний соотношение (5') дает
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.