Главная » Просмотр файлов » Часть 5. Дифференциальные уравнения в примерах и задачах.

Часть 5. Дифференциальные уравнения в примерах и задачах. (509319), страница 71

Файл №509319 Часть 5. Дифференциальные уравнения в примерах и задачах. (Часть 5. Дифференциальные уравнения в примерах и задачах.) 71 страницаЧасть 5. Дифференциальные уравнения в примерах и задачах. (509319) страница 712013-08-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 71)

Решение примера сводится к случаю д). Получаем 1( 1)3 — а 1С)+ а сова(зЛ)3С ф — — + ) г р 2 + ( 1 р + а ) г у 1 ( д + Са )3 — га '1 (3(р' — а' — 23') 2 (,рг + аг — (32 — 12аг3 рг «аг — 232 + 12а)3! (рг + аг — )32) + «аг(32 689. а) !'(С) = з(п(ыС вЂ” ре); б) 7(С) = зй(ы( — ре); в) 7(С) = соз(ыг — 121); г) г(С) = сЛ(ыг — уге); д) г(С) = (аС вЂ” Ь)'.

< Применим теоремы подобия и запаздывагня дпя нахаждсина ИЗОбражения оригинала вида 7(аг — Се), Гдс Се ) 0 и а — комплексное число. Пусть 7 Ф Р„тогда по теореме подобия ,7(аС) Ф а!" („) . По теореме запатаывания имеем 1 ~(ог — Се) = «(а(С вЂ” ад)) =; — Р ~-) е а, а) Воспользуемся решением примера 687, а) и формулой (1), Подучим Свг ю Яп(ы( — угг) =; е р2,1 ы2 51. Преобразованяе Лапласа. Освовнме вошпня н саойспа 329 ! Г(п+ П ь о'Г(а+ 1) еь (Ш вЂ” Ь) =' — — „„е е о (г)" Р "' (а! бп0 у(1) = О(1 — (ь) '= ( О' 1 ' — обобшеннач единичная функция Хевисайда.

( 1, 1>(ь, О, 1<(ь и Согласно решению примера 679 и формуле (1) из примера 689, получаем; -рьь О(1 — (ь) Ф— р 691 1' а, если 0(1( т, О, если 1( Оияи(> т. и Представььм функцию ьг в виде т'(1) = (ь)(() — О(1 — т))а. 'Тогда 7(т) ьг! е' ть 1 — е' 1'(1) Фа~ — — — ( =ар Р Р ( 1 — 2а, если 2а <1< а+Ь, б9о. 7(1) = ~ 2Ь вЂ” 1, если а+Ь <1< 2Ь, (рис.96). О, если 1> 2Ь или 1(2а О 2и и Поскатьку функцию У можно нрелставить в виде 1'(1) = (1 — 2а)ь)(1 — 2а) — (( — 2а)г)(1 — а — Ь) + (2Ь вЂ” 1)г)(1 — а — Ь) + (1 — 2Ь)зр(1 — 2Ь) = = (1 — 2а)О(1 — 2а) — 2(1 — а — Ь)ь)(1 — а — Ь) + (1 — 2Ь)ь!(1 — 2Ь), -2ат 2е-(аьььт -зьл ( — Р -ьт)2 И): + Рз )ьз )ьз 2 (см.

решение примера 689,д)). > И Записав функцию 7 в виде Я) = О(1 — 1) — О(1 — 2) + 29(1 — 2) — 2О(( — 3) + 39(1 — 3)— — 3ь((1 — ч)+... +(и — 1)ь)(1-(и-1)) — (и — 1)О(1-и)+пО(1 — и)+ ... = = Ч(1 — 1) 4- г)(1 — 2)+ П(1 — 3)+ ... +О(1 — и)+ ..., О 1 2 3 получаем 1 " ь ! /(1) =' — ~ е ' р,, р(ет 1)' б) Аналогично, принимая во внимание решение примера 687, б), имеем ящ аь зй(ььт — Рь) Ф е ье — ьь в) Согласно 687, в), созьь( Ф -гр — т. По формуле (1) накопим: -~- ьь сгл соз(ьь( — рь) Ф е р' т ьь' г) Воспользуемсьг решением 687, г) и формулой (!). Получим Рта Р с)ь(ьь( — ус) = е Р ьь д) Пршгнмая во внимание формулу (1) нз примера 682, а также формулу (1) из настояшего примера, имеем Гл.

7. Метод ивтмрааьвых преобразований Лапласа ЗЗО если В < а, если ! Ъ а (рис. 98). / можно представить в виде — е ) 9(! — а). б94. /(!) = ~,', и, .? ! О, М Очевидно, что функцию У(!) = (! Следовательно, ЕР' ЕР' Ье«' /(!) =; — — — = . а р р+ь р(р+ь)' 0 а Р .РВ (рис. 99). пЕУо Найти изображения периодических оригиналов. ® / яп(, если 2пгг <! < (2п+1)а, ) О, если (2п+1)а <! ((2п92)л, М Воспользуемся следствием из теорелгм 5 и. 1.2: если / яш?яется Т-г?ериодической функцией, то г р(р) = — я)е Р Ж.

1 — е Ртl 1 о В рассматриваемом случае получаем: ? 0 Е(р) = — / е " яп(Ж = / е ' з(п(?й = е-2«Р / 1-е-2« / й о 1 ! 2 Р о, е Р'(соз(+рып!)! 1 — е "Р (! — е "«)(р?+1) о 1+е "" 1 (1 — е 2 Р)(р? О Н (р' О Н(1 — е «Р) )л а л а Таким образом, 1 Я) ф —— (р? "!. 1)(1 — е «Р) 696. /(!) = )Р?паЦ (рис.100). М Функции / — — -периодическая, следовательно о « Е(р) = —,/ е "в!па(г(! =, 1пт / е~ Р г(!— — — .иа? 1 — е Р« 1 — е Р« о 1 о 1 е Рг(аспас!+рипа!) р?+ а' -Р- — Е о а 1+Е Р«а ЕР?«+Е Р?о а к р2+а2 1 -?- р?+а2 2 -Р Р2 ! а2 г сгйр л а ?à — )о!па!!ф с?йр —. М 2а' р?+ а? 2а о!п! / 1, если 2пл < ! ( (2п+ 1)а, 697.

Р(!) = ~ЯпЦ 1 -1„если(2п+1)я <В < (2п+2)л, ибро(Рис 001) О, если!<О и Сужение функции / на положительную полуось есть 2?г-периодическая функция, поэтомУ 2« 2 Р(р) = / е " аап(в)ив) г(! = ~ / е Р йь — / е М и! 1 —.-"/ 1- е-?.Р,/ о о !/,о,?1 1 (1-е«)2 1 — е' е? — е «1 рл —. - ?Ь вЂ”. Р 2 ~« ~ / 1 — е4 Р(1 — е-?Р ) Р(1+ е-2 ) р еет + е"7) р $ !. Преобразование Лапласа. Осыовиые попятив и свойства ЗЗ1 Следовательно, топ С 1 рог — = — СЛ вЂ”. М !2)пЦ ' р г' О 2а 4а ба 8а гоо.

цц тьи. Сег — — 422, если 4па < С < (4п+ 1)а, — „— + 4п+ 2, ес22и (4п+ 1)а < С < (4п+ 2)а, 698. У(С) = 7(С + 4а) = п Е Уо если (4п+ 2)а < С < (4п+ 4)а, С < О, О, (рис. 102). <о Функция 7 4а-периодическая, и ее изображение найдем по форм)ле Р(р) = / е " У(С) 2(С = 1 1 — е аар 1 а 2» '-.4'-'"")" (--') "> = о + 2 р2 о р р' р , арз(! — е »ар) (1 — е 'Р)' 1 еао ар'(1 — е зр)(1+е "Р) арз(1+е 'Р)(1+е "Р) арз(1+е ' Р) Таким образом, (Л -"8 У(С) . ар2(1+ е-2ар) ' Пользуясь теоремой смещения, найти изображения функций. 699.

а) 1(С) = е "' з(пь21; б) 1'(С) = е "2 оЛ»21; в) у(С) = е "сох ь21; С» г) ЯС) = е "спор!; д) 7(С) = С ео'1 е) 7(С) = С'о!п))С; ж) 7(С) = „ео бпаС; з) 1(С) = -„-гопаС; и) Я) = -„теглзйа(; к) ЯС) = С'соо(ЗС; л) 1(С) = -„-те"'сора(; м) 1(С) = -пт оп а(; н) Я) = -„-тел' сЛ аС. и В случаях а)-д) можно непосредственно применять теорему смещения. В общем же случае, если требуется найти изображение функции (о, следует, если зто возможно, представить ее в виде у2(С) = е""РГ(С), ро — — сопи и применить теорему смещения. Тогда 72 ф 2Р(р — ро) где ар — изображение функции 2(2. имеем: а) цп ьРС ф -т-И вЂ” т т (см.

пример 687, а)). По теореме смещения 12 +Ю -оо Ь2 е о(пьРС =; (р + а)' -1- ьа' б) ойь21 =; — го — т т (см. пример б87, б)). Следовательно, Р— »2 -»2 а2 е оймС вЂ”. 222 Гл. 7. Метод иатевральимх ареобразоааиий Лапласи я) совы! Ф вЂ” ~-Е-т (см. пример 687, в)).

Тогда р .~ав р+а е совы! =; + а)в+,„в' г) сйы! Ф -т-г-т (см. пример 687, г)). По теореме смещения р — ав р+а е ' сЬав! Ф "---.— -- —— (р+ а)в — ыв л) ! Ф вЂ”;тт — (см. пример 682). Тогда , гьх+ !> р" Г(а+ И ! ел =' ()в >у)ав! ' В частности, !" ещ Ф вЂ” и 1„-а; ' (р — >т>"+ ' е) решение сводится к случаю д). действительно, !" х!и >М =- 27(!'ем — !'е вл'). Г(а+ 1)((р+Дв) +' — (р — дв)'а') ! Мп!М Ф 2в(рв 1 >)2)а.~.! Если а = и, то !" „.„,, 1 ()'+Д()"" — (р->)в)ам и! 2в (р'+в)в)а+в Если а = -2, то 1 ввп>У! в/Я т/Р+ Дв — в/Р >)в / ' 2в /рт+ >Ф в1п ! В частности, — Ф 2 2р ! хс) Решение свалится к случаю е).

Имеем 1 (р — !>+ а!)ам — (р — Д вЂ” ав)"ы — ел йпа! —; —,- и! ' 2в ((р — /))в+ ав)ам з) Предо!алим функцию / л виде /(!) = 2 ! ате — -иге ! и воспользуемся счучаем ж). 1/!" в ва -П Получим !а 1 '1 (р + а)"+' — (р — а)"+ — вл а! —;— вв! ' 2 (,(р — а)"+' (р+ а)"+'/ 2(рв ав)ав в н) Воспользуемся решением з) и теоремой смещения. Имеем п( ' 2((р )))2 ав)а+! к) из представления функции /(!) = т ((левш+ !'е ш ), решения д) и теоремы смещения находим: 1 / Г(а+1) Г(а+1) > Г(а+1) (р+в)3)~~ +(р — в>3)'+ !' сов)у! Ф вЂ” ~ 2 в,(р — в>у) "' (р+ в>у) м/ 2 (рв+>ув)а+в +в "+'+ — в )"+' в Ч~ 'ь!+р / в В частности, -т соз/М вЂ” ' (Š— '-~)-~ — -(Геа ат~ —, ~~~- — ' 2(р +р )"+ 2х( 2 рв -~- ! л) Поскольку, согласно д), -т сохаь Ф „+, то по теореме смещения имеем ва +Ва)а+в+( ва)а+в 2 +а )"+ !" Лв, (р — >9+ ва)""' + (р — >у — ва)"+' —, ел соваФ вЂ” ' 333 Ф 1 Преобразование Лапласа.

Основные пошпия и свойства м) Таккак -тс>за! = ч (-те + -те ) и согласно д), ! е =' — "-„-~, то !ь ! /!в ! !" ОП ы . ш и. (и. и. (р — а)"+ с" (р ! а)л+ ! (р а)аы — с>з а! — ' — + и! ' 2 ~(р — а)ьн (р+а)"г!/ 2(р! — а')иы ц) Воспользуемся решением м) и теоремой смещения. Находим: Л! (Р— Д+ а)"ь' + (Р— >3 — а)оы — е с(з а! — ' и! ' 2((р — (3)! — а')иы Найти изображения дифференциальных выражений.

700. Ту = уа(!) — 5у "(!) — 4у"(!) + 2у'(!) — у(!) + 8 при условиях у(0) = 5, у'(0) = О, у"(0) = — 1, у'"(0) = 2. и Пусть у(!) Ф У(р). Тогла по теореме 7, п. 1.2, получаем, принимая во внимание начальные условия: у (!) =' рУ(р) — 5; у (!) Ф р У(р) - 5р; у"'(!) =', р У(р) — 5р + 1; у'"(!) Ф р У(р) - 5р +р — 2. Применим свойство линейности преобразования Лаш)аса. Имеем Ьу Фу~У(р) — 5р +р — 2 — 5 (р'У(р) — 5рз+ 1) — 4 ~р~У(р) — 5р) + 2(рУ(р) — 5) — У(р) + — = р = (р~ — 5рз — 4рз + 2р — 1) У(р) — 5р О 25р + 2!р — 17 + †. М р 701. Ьу = уа(!) — 2у"(!)+ Зу'(!) — у(!) при условиях у'(0) = у(0) = О, у"(0) = 1 и у(!) Ф у(р).

я Действуем по той же схеме, что н лри решении предыдущего примера. Получаем: у (!) =: рУ(р> — д(0> = рУ(р> уи(!) ф р'У(р> — д(0>р — у'(О> = р'У(р>; у 0) ~ р У(р> — у(0>р — ру'(0> — у"(0) = р > (р) — !. Следовательно, Ху ф р'У(р) — 1 — 2р 1'(р) + ЗрУ(р) — У(р) = ~р~ — 2р + Зр — 1) 1'(р) — 1, М 702.

Найти изображение производной функции у(!) = ц2. м Имеем ~,73) У(!) ф 3 р! р! 2рт Функция Т'(!) = = существует т! > 0 и не существует при ! = О. Изображение таких фуцк! гя! ций находим по теореме дифференцирования оригинала, в которой предполагается, что Тм!(!) существует ч! > О, а при ! = 0 Т!"'(!) вообще может не существовать. Таким образом, У'(!) Ф р — з — у(0) = —, (так как Т(0) = 0). и зг'я з/я 2р! 2р! 703.

Ту =у +гу! +4у, у(О> = у'(О> =у"(О> = О, у"'(О> = у' (0> = — !. < Принимая во внимание начальные условия, получаем: у"О) ф р'У(р)+р+ 1, у'"(!) Рр'1'(р>+ 1, т,у =, (р'+ гр'+4) у(р)+р+ 3. в ЗЗ4 Гл. 7. Метод иатеграаьиык преобразований Лапласа С помошью теоремы о дифференцировании изобрюкенил найти изображении функций. 704. а) /(С) = Сяпас; б) /(С) = Ссозас; в) /(С) Ф со(гас; г) 70) = ссйаС.

Характеристики

Тип файла
DJVU-файл
Размер
3,39 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее