Часть 5. Дифференциальные уравнения в примерах и задачах. (509319), страница 13
Текст из файла (страница 13)
и+1 Подсивив значение С(и) в (1) и принимая во внимание, что и = кх, запишем общее решение исходного уравнения в виде 109. (2еу — хгу — уз)г(х — (х'+ уз — хз — ху')йу = О. М Это такие уравнение Миндинга — Дарбу, поскольку (2ху — х у — у ) г(х — (х + у — х' — х у ) !(у = 2ху ох — (х + у ) бу — (х + у )(у !(х — х оу). Полагая у = их(и)„получим уравнение с разделяющимися переменными (и — из) ох + х(1 + и')(х — 1) Фи = О, из которого следует, что х — 1 и = С. иг Следовательно, в старых переменных имеем у(х — 1) = С(х~ — у ). м Решить сведующие задачи.
110. найти кривую, которая имеет следующее свойство: отрезок оси (гх от начам координат до пересечещи с касательной к этой кривой в любой точке пропорционален ордянате этой точки. М Из уравнения касательной к искомой кривой в точке М(х, у) 1' — у = у'(д' — х), $4. Лвиейвые ураанеивг и уравнения, врвавдаивеея к ивм 47 где Х, à — текущие координаты касательной, следует, что абсцисса точки пересечения ее с осью Ох равна х — лг. Согласно условию, имеем уравнение у у ах х — — = йу, или у — — х = -йу. у ау Все решения полученного уравнения имеют внл *=у(С-й) ~у1).п 111.
Найти кривые, у которых площадь трапеции, ограниченной осями координат, касательной и ординатой точки касания, есп величина постоянная, равная За . г м Из уравнения касательной (см. предыдущий пример) находим длину отрезка ОК: 10К) = = у — ху' (рис. 21). Пуси Б — площадь трапеции КОММ. Имеем (КО( + 1М1(г! 2 у Согласно условию задачи, Я = За'. Следовательно, 2 За = — (у — ху + у)х. 2 М(х, у) Полученное уравнение линейное относительно у: а баэ К ху' — 2у = — —.
Его общее решение имеет вид 2а у = — +Сх. ~ х га. эг 112. Найти кривую, в каждой точке которой поднармаль является средним арифметическим кьздратоа координат этой точки. < Согласно условию, имеем (рис. 22.): ~ЛЧ~ = -' (1Одг!'+ !МЛг~') . Рассмотрим треугольник М)тЬ и найдем длину катета ФЬ. Имеем (ЛЬ| = уу'. Таким образом, лнфференциальное уравнение искомых кривых имеет вид 2уу' = х + у'. Полагая в нем уэ = н, получим линейное уравнение в'-и = х'.
Решая его, находим и = Се*-х~ — 2х-2. Окончательно имеем у =Се — х — 2х — 2.п э 113. В баке находится 100 л раствора, содержащего 10 кг сали. В бак втекает 5 л воды в минуту, а смесь с той же скоростью переливается в другой 100-литровый бак, первоначально наполненный чистой водой. Избыток вэщкости иэ него выливается. Копи каличеспю соли во втором баке будет наибольшим? Чему оно равно? м пуси, 121(1) и Щг) — количества соли в кг соответственно в первом и втором баке в момент вРемени 1 ат начала пеРеливаниЯ.
Тогда з?017 — — количество соли, выливающеесЯ из первого бака ао второй за время ат (до 1+ж, а тбв' — — количество соли, выливающееся из втоРаго бака за этот все пРомежУток вРемени, где(и Е (1, Г+Ж), йп Е (Г, 1+Ж). Слеповательно, Ж~(~п) Жэ(~а) (1) 100 100 48 Гл. 1. Диффереициальвые уравнения нервно нарядна есть количество соли во втором баке в момент времени (+ ах(, а а'„та((+Ь() =(2,(1) — ' " ти РОО (2) есть количество соли в первом баке в этот же момент времени. Из (2), переходя к пределу при Ы -а О, получаем дифференциальное уравнение Ма — = -0 05(ка рй откуда а'„та = Се к~', где время С измеряется в минутах.
Поскольку (4а(0) —. 10, то С = 1О, Следовательно, !О -о,ма (3) Совершив предельный переход в (1) при аз( — О, и принимая во внимание (3), получим — = -Оа05()т + 0,5е а(а;тт -о,ора Решив линейное уравнение, имеем (4т(1) = (0,5( + С)е Так как ((т(0) = О, то С = О. Окончательно находим ((т(() = Оа5(е Исследуя функцию ь)т иа экстремум, получим, что шах ()т достигается при 1 = 20 мин и равен !О (7т(20) = — ре 3,68хт. в е 114. За время арр (где аь( О и выражено в долях года) из каждого грамма радия распадается 0,00044 Ы грамма и образуется 0,00043 М грамма радона.
Из каждого грамма радона за время Ы распадается 70а)1 грамма. В начале опьпа имелось некоторое количество хр чистого радия. Когда количество образовавшегося и еше не распавшегося радона будет наибольшим? ° Обозначим через Р(1) и ()(() количества нераспавшихся радия и радона соотвсютаенно в момент времени 1 от начала распада (в годах). Тогда Р(1) — Р(1 + а5() есть количество распавшепзся радия за время от 1 до (+ а),(, а ак((+ 2м) — („т(() — количество образовавшегося радона за это же время. Согласно условию задачи, имеем уравнения: Р(1) — Р(1+ й() = Р((п) 0,00044,5(, (1) ()((-ь а)а() — ()(1) = Р((аа) Оа00043а)а( — (4((ат)70ах(, (2) где (и Е (1, (+ Ь(), (п б (1, (+ аь().
Совершив предельный переход при а!а( -+ 0 (предварительно разделив на а5( левые и правые части уравнениИ (1) и (2)), получим дифференциальные уравнения а(Р— = — 0,00044Р(1), (3) — = 0,00043Р(1) — 70Ж). М4 ай (4) Решение уравнения (3) имеет вид Р(() = хое (5) Подсшвив (5) в (4), получим дифференциальное уравнение, проинтегрировав которое, найдем: тра Оа00043хр аа пора,ц 69,99956 Принимая во внимание начальное условие (г(0) = О, опредетшем С: С = --ф щ~~. Оконча- 0 00043х 'тельно имеем 69,99956 ( Исследование на экстремум функции 7(1) = е р'"'4' — е 'р' показывает,.
что пах 7(() достигается при ! 70 69 99956 О 00044 й 4. Лвнейвме уравнения н уравнения, прнведввгиеев к иим 49 115. Даны два различных решения У1 и уг линейного уравнения первого порядка. Выразить через ннл общее решение этого уравнения. Н Линейное дифференциальное уравнение у'+ Р(х)у = ге(х) имеет общее решение у = (С + а(х))Д(х), где а(х) = ) (г(х)!Г'(х) 1(х, !)(х) = екр (-~Р(х) г(х) . согласно условию, из (1) имеем У1(х) = (С1 + а(х))29(х), уз(х) = (С2+ а(х))Д(х), (2) где С, и С2 — постоянные, соответствующие решениям у, и уг. Далее, исходя из равенств (2), вырюкаем функции а и )3 через решения у, и у,. Получим У1(х) — У2(х) С,уг(х) — СгуНх) о(х) = (С, Н С2), )У(х) = (У1(х) Ф У2(х)). С,-С2 У1(х) У2(х) Наконец, подставив значения а(х) и ))(х) в (1)„найдем; 1 у = ((С, — С)уг(х) + (С вЂ” Сг)У1(х)) = уз(х) + С(уз(х) — У1(х)), где С = Сз--С- — произвольная посюянная.
М С вЂ” С 1 2 116. Найти то решение уравнения у 11п2х = 2(у+ созе), которое остается ограниченным при х— 2 Н Из рассмотрения общего решения этого уравнения ! у= Сгух —— соз х следует, что 1!ш у(х) = !пп (С !ух — —.) существует лишь при С = 1 н равен нулю. Поэтому 1 2 т 2 у = гдх — зесх яюиется требуеммм решением. Н 117. Пусть в уравнении ху'+ ау = у(х) имеем а = сооз1 > О, непрерывная фу21кцня у -1 о при х -+ О.
Показать, что только одно решение уравнения остается ограниченным при х — О, и найти предел этого решения при х — О. н Представляем общее решение уравнения в виде у = --+ — ! У(!)!(!" й(!!!) /х!' (1((!!!) = зупЫ(, ( ~ 0), или С Ь ! г У= —.+ — + —,2! е(()!!!' 'й(!!!), )х!' а !х!',/ где е(() — 0 при! — 0 в силу условия. Вследствие оценки — ( е(1)!1/' г(Я) < — шр (е(1)! -г О, х - О, (*( / а а<1<* о из (1) следует, что Вш у существует и ограничен только при С = 0 и равен —. Решение уравнения, Ь х О о котором шла речь в условии задачи, имеет вид У = —, ~ У(!)М" ' й(Ю 2ь о Гл. 1. Дифференциальные ураваеввя первого ворцдва 50 118. Пуси в дифференциальном уравнении в предьсдущей задаче о = сова < О, у(х) - Ь при х — О.
Показать, что все решения этого уравнения имеют один и тот же конечный предел при х с О. Найти этот предел. м Очевидно, что общее решение рассматриваемого уравнения при соблюдении условия У(х) Ь при х с 0 можно представить в виде у=)*! '( + /У(~И*)" ' ($*!)) = — +)*) '( + / ~(~)$*!' ' (!*~)) Если интеграл /е(х)сх(' 'с((сх() ограничен, то при любом С, очевидно, бшу(х) = о. Если указанный интеграл не ограничен при х - О, то применяем правило Лопиталя: /а(*)1~) с(()~)) ~(~))хс -с Ош — Вш — О, е )хсс я е о(хсс Таким образом,!пну(х) = — при всех значениях С.
М '* а 11хм. показать, что уравнение Фьг + х = у(с), где функция у непрерывная и ~Т(с)( < м при -оо < С < +со, имеет одно решенйе, ограниченное при — со < С < +ос. Найти это решение. Показать, что найденное решение периодическое, если функция г периодическая, м Общее решение данного уравнения можно представить в виде х(С) = Се '+ е ' / у(т)е' с(т. (1) Ю Такое представление возможно в силу того, что несобственный интеграл с 1(т)е с(т, как показывает оценка (2) сходится. Из неравенства (2) также следует, что функщся е ' / У(т)е' с(т ограничена числом М для всех С б (-со, +ею). Таким образом, необходимым (и достаточным) условием ограниченности функции х является равенство С = О.