Главная » Просмотр файлов » Часть 4. Функции комплексного переменного - Теория и практика.

Часть 4. Функции комплексного переменного - Теория и практика. (509318), страница 70

Файл №509318 Часть 4. Функции комплексного переменного - Теория и практика. (Часть 4. Функции комплексного переменного - Теория и практика.) 70 страницаЧасть 4. Функции комплексного переменного - Теория и практика. (509318) страница 702013-08-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 70)

и Е Хь иг + а м Очевидно, (Н- ! 1(". из+ а 2а 2 ~ и'+ аг 2аг 2 ~ д-» (2и)г е а!»'. » (2и Пг+ =а ! г ( с<аз» с<а з' с<а гг» с<д໠— — гез + гез + гез гез 2аг 2 1, 4»'+ а', ° 4»ге а' (+< (2» Пг+ аг, „(2 Пг г г г г 2а' 2 ~ 4>а 4>а 4>а -4>а 1 к >га я гка 1 я (га л ка 1 >г Г за ко~ = — е — с<й — + — (а — = — + — с!)> — — — !)> — = — + — !хс!)> — — !» — ) = 2а' 4а 2 >4а 2 2аг 4а 2 4а 2 2а' 4а х 2 2 ) 1 (г (с)> —," — з(> —; ) 1 зг 1 ! (' (га 2а' 4а '< з(> — с)> —, / 2аг 4а з)> —; с)< —; 2аг 'х з(< ха l б.

Доказать, что; б) гез -т; = е г ( г) ! <з > гез — ', (<ч > ( ->в(г зп!' — ! газа„г =е ~ (ЙЕХ); в) Упражнения для самостоятельной работы 1. Найти вычеты следующих функций в особых точках: ,г» а) у(») = —,*,„. (и б ГЧ); б) У(») =,—,*,,„(об 1М); в) у(») =-соз» вЂ” яп»; г) г'(») = »"е' (и Е (М); д) у(») = —; с) г(») = е <и —,' 2.

Найти вычеты в конечных особых точках следующих функций: а) у"(») = — '-'"— — ~,' б) 1(») = --,— '.; — г. <*+ >(=-г',) ". г* 3. найти гез —,' (! +,<, е ... +,, <и„) (и е 1>1. 4. Найти вычет функции 1'(») = !',т.- (Л = 1). 5. Пусть 7 и д — аналитические в точке» = а функции, причем /(а) И' О, а д(») имеет в точке» = а нуль второго порядка. Доказать, что: г( > ь ' » "( -г ( > "'(« гез <.> — з "< > Если >ке точка» = а — простой нуль фуню<ии д и У(а) Ф О, то г(и> г'((>я'(а>-т( >з (зг гез «.*, = , > 292 Гл.

7. Вмчеты и их применения 7. Пусть функция у" имеет в бесконечно удаленной точке пояюс порядка Ур. Доказать, что гезу(з) = (р„='~х !!ш (раь+'у' 'рп(з)). 8. Вычислить интегралы: ,2 а) ); ', 4з, Г = (7, 7рр), 7 = (л Е С: ~з — Д = 3); г б) 3 а зш — лз, Г=(7~7рр)) 7=(зЕС-~з~=!) г в) ) (яп -'т + е* соз з) 4з, Г = (у, у,р), у = !го Е С: (л( = —' ,) . г 9. Доказать равенства: а)),'„,.", =2п+1, Гп=(ул,7'р),7п -— ( ЕС:~ ~=Я), п<2!<и+1, тбИ, пЕЫ; 'и б) ) ~' = — ', Г„= (7„Г; ), 7„= (з б С: )з~ = г), г > '- и при бояьших (а~ г ьр р-8 '3 10.

Вычислить интегралы от всех ветвей подынтеграчьных многозначных функции. а) ) „,,;,, Г=(у,.у„), у= )з Е С: ~з — 1~ = —,'); г б) ) т7! 4 ар ба, Г = ( у, у„), -у = (а Е С: ~з( = 2); г в) ) р„',~*м, Г=(у, ур), у=)зЕС./з — 2(=-,'). г 11. Вычислить интегралы от данных олнозначных ветвей многозначных функций: а) ) „, ',, (Еп з(,-, = 1 — яо), Г = (у, у„), у = )з Е С: ~з+ 2! = -,у; г б) ) ~~ —,~ ~- — (~л !! -о (), Г=(7,7р), 7= !осС:(з~= !). г 12. Доказать, что ) —,— ~ту — = — ~7к (а > 0). о 13. С помошью теоремы Мин аг-Леффлера найти обший внд мероморфной функции 3 „имеющей полюсы второго порядка в точках Ь„= и с главными частями в них д„(з) = -,--"--р.

14. Доказать равенство: ю 15. Доказать равенства 16. Найти области сходимостн бесконечных произведений: l 17, Доказать, что функция у, где у(л) = П ( (1 — -"„) ехр (-'+ -' (-„') )) является целой. еш Найти нули этой функции и их кратность. 18. Получить теорему Вейерштрасса (п. 3.3) из теоремы Миттаг-Леффлера (п. 2.2). 293 Упражнения лдя самостоятельной работы 19. Доказать равенства: ' П (1+ —,.*,'.,); б) а)тгод"-т-*, = П (1 — Ы) ' ю ( а) с)г х — соз х в) йе=хП 20. Доказать равенства; — ч и (~ + а) = *" ~,.-~ а) П(1 21.

Доказать равенства: г г Д) ) .-,',*,.:,: = -,г(о —,т=Ь-), 0<0<о. о 22. Вычггслигь интеграл: 3 = ( е '"'* о(п(а з)п х) з(п пх о(х (и Е (г0. о 23. Доказать равенства: а о 25. Доказать равенства: о) ~;-*--рох = с" ',—,„'„,, с ) О, -1 < о < 3 и неравно целому числу; )3) 1 ', г(х = — ~.', о о о 26. Интегрируя функцию х оч,г (х) =;-'--г по Я=(ась:0<)х)< границе кругового сектора й, О < ага а < — ', г3, доказать равенства о 27.

Интегрируя функцию х г-~ 3(х) = Д-от по Я= (хбС:г<(з(< а границе кругового сектора 12, О < ага х < —, 3, доказать, что: Г г * — г б) Г * га и а2 *о.~- г о о а. 24. Интегрируя функцию з ~ г( ) = —;„, — а < о < гг, по границе прямоугольника с вершинами в точках ( — Л, 0), ()1, О), (Л, г), (-Й, г), доказать равенства: Гл. 7. Вычет!а в вх првмеиеиив 194 28.

Доказать равенства: 1) ~ ! ! — зт — — з(с)8то+сйта), =! Глава 8 Некоторые общие вопросы геометрической теории аналитических функций Эта глава посвящена изучению некоторых общих топологических свойств аналитических функций. В ней рассмотрены геометрические принципы и общие вопросы теории конформных отображений. Последний параграф посвящен конформным отображениям многоугольников. 5 1. Принцип аргумента.

Теорема Руше у у (г)У'(г) 1.1, Вычисление интеграла — / г(г, 2в г,/ У(г) — А ап Пусть Р Ф С вЂ” область, У вЂ” аналитическая в замыкании В функция, за исключением конечного множества полюсов, лежащих в Р (но не на дВ) и дР— непрерывная положительно ориентированная кривая. Пусть, даосе, А — такое произвольное (конечное) комплексное число, что функция У не имеет А-точек на границе дВ, а р — произвольная аналитическая в замыка- нии В функция. Рассмотрим в области Р функцию г о гт(г) = ЯЯ. Ее возможные особые точки в  — зто А-точки и полюсы функции У.

Пусть (оь1 )о = 1, т) — А точки функции У в Р кратностей соответственно ао ан ..., а а (Ь,1 У = 1, о) — полюсы соответственно порядков до ))и ..., В„. Изучим функцию Р вокрест- ности точки аь. В соответствии с формулой (3), и. 1.8, гл. 5, имеем У(г) — А = (г — аь) о Уо(г) Уо(оо) Ф О. Тогда У'(г) = ао(г — аь) " Уо(г)+ (г — оо) оУо(г), Р(г) = (о(г) „— )о(г) (г — ао) ' '(аьУо(г)+ (г — аь)Уо(г)) аьУо(г) е (г — оо)Уо(г] (г — аь)"г Уо(г) (г — ао)Уо(г) откуда геоР(г) = аь(о(аь). о Аналогично, рассмотрим функцию Р в окрестности точки Ь,: У(г) — А =,, Уо(Ь;) Ф О, Уо(г) Уо(г) Уо(г) 1 „-У)у Уо(г) + Уо(г) (г — Ьз) ( — Ьу)У ( ) 29б Гл.

8. Некоторые общие вопросы геометрической теории аналитических функций откуда гезР(л) = -д,р(Ь,). ьз По основной теореме о вычетах имеем Х'(л) д — / зз(л) = ~~~ оьгз(аь) — ~~~ ))зуз(Ь ). во ьщ гщ В дальнейшем каждую А-точку засчитываем столько раз, какова ее кратность. Аналогично, каждый полюс засчитываем столько раз, каков его порядок. При таком соглашении правая часть формулы (1) выражает разность между суммой значений, принимаемых функцией р в А-точках функции Г и суммой значений, принимаемых той же функцией эь в полюсах функции У, лежащих в области В. Рассмотрим частные случаи.

1) При р(з) = л формула (1) принимает вид — / з = ~ а„а„— ~~ь )узбт Г Г'(,) и. зщ (2) В правой части формулы (2) стоит разность между суммой А-точек функции Г и суммой се полюсов, размещенных в Р 2) Прн р(л) = 1 имеем —,/ йз=~~ оь — ~д,. 2ль / у(л) — А ао ьщ зщ (3) В правой части формулы (3) стоит разность между числом А-точек и числом полюсов функции у, помещенных в области В.

1.2. Теорема о логарифмическим вычете. Пусть теперь А = О, т. е. А-точки функции 1 являются ее нулями в области В. Введем в рассмотрение следующие обозначения: 2 аь = )у — число нулей функции Г в ь=! области В, 2,')), = Р— число полюсов этой же функции в В. Тогда зщ Г ~'(.) — — йл = Аг — Р. 2ль У(л) Интеграл, находящийся в левой части этого равенства, называется логарифмическим вычетом функции г относительно дВ, а само равенство выражает смысл следующей теоремы о логарифмическом вычете. Теорема, Пусть Р ье С вЂ” абласгиь с положительна ориентированной границей дВ, и множество тачек границы лвляегися кривой Жардана.

Тогда, если функция Г аналитическая в замыкании Р, за исключением иаликав, размещенных в Р, и )' не Мращается в нуль иа дВ, та логарифмический вычет функции относительно дР равен разности между числам нулей и числам полюсов функции У, размещенных в области Р, 1.3. Принцип аргумента.

Теореме о логарифмическом вычете можно придать геометрический оттенок. Первообразной функции гТ в окрестности любой точки л Е дР, в которой нет ни нуля, ни полюса функции У, является функция л Р(л) = 1п 1(л), где 1п обозначает любую ветвь логарифма, посколысу Р'(л) = Яе). Ф 1. Принцип аргумента. Теорема Руте 297 Пусть дВ = (у, 7~), (а, (у) у — параметрическое представление кривой 7. Тогда пер- на вообразной функции ~- вдоль кривой 7 является функция г ~ Ф(г) = Оз |()з(г)). поскольку ггривая 7 замкнута, то !и (У()зО5))( = !и (у(уг(а))(, Принимая это во внимание и применив форму- лу Ньютона — Лейбница (см. формулу (1), и.

5.2, гл. 4), получим: — дг = Ф()3) — Ф(о) = ((агам()з(~))) — агй1~0р(а))). Х'(з) У(з) вп Введем обозначение Ьоп агй Т = ага Т()з()3)) — ага Т(гр(о)) и запишем равенство (1) в виде 1 / Т'(з) г2вп ага У вЂ” — дз = 2аг / У(з) 2а вп или, принимая во внимание теорему о логарифмическом вычете, в виде ! )У вЂ” Р = — йгоп агд Т. 2я (2) 1.4. Теорема Руша.

Характеристики

Тип файла
DJVU-файл
Размер
3,53 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее