Главная » Просмотр файлов » В.В. Дуркин - Аналоговые электронные устройства - Конспект лекций

В.В. Дуркин - Аналоговые электронные устройства - Конспект лекций (1267369), страница 14

Файл №1267369 В.В. Дуркин - Аналоговые электронные устройства - Конспект лекций (В.В. Дуркин - Аналоговые электронные устройства - Конспект лекций) 14 страницаВ.В. Дуркин - Аналоговые электронные устройства - Конспект лекций (1267369) страница 142021-09-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 14)

Дифференциальный усилитель (ДУ) предназначен для усиления разности двух входных напряжений (рис. 5.9).

Стабилизация коэффициентов усиления ДУ так же, как и для инвертирующего и неинвертирующего усилителей осуществляется с помощью ООС. Выходное напряжение

(5.13)

Если , (5.14)

, (5.15)

т.е. выходное напряжение ДУ пропорционально разности входных напряжений.

В нутренние сопротивления источников сигналов RС1 и RС2 включается последовательно с R1 и R3 и влияет на коэффициент усиления этих сигналов. Если RС1 = RС2, то для соблюдения условия (5.14) целесообразно принять и . В этом случае наличие не равных нулю RС1 и RС2 повлияют на коэффициент усиления дифференциального сигнала, но не будет нарушено условие “дифференциальности” усилителя, т.е. коэффициент передачи синфазного сигнала будет оставаться близким к нулю.

К недостаткам схемы на рис. 5.9 следует отнести низкие входные сопротивления и трудность регулировки коэффициента усиления. Регулировка возможна только путём одновременного изменения сопротивления двух резисторов (например, R2 и R4). В противном случае будет нарушаться равенство (5.15). Можно спроектировать несколько усложнённую схему, где регулировка коэффициента усиления возможна с помощью одного переменного резистора (рис. 5.10).

Если , и , то

, (5.20)

т.е. регулировку усиления можно производить одним переменным резистором R7. Выходная статическая погрешность при и для схемы рис. 5.9 определяется выражением (5.5).

5 .5. Интегратор

Интегратор – это устройство, у которого выходной сигнал пропорционален интегралу (по времени) от входного сигнала.

Процедура интегрирования в операторной форме имеет вид

. (5.21)

Если , а , то из (5.21) следует, что

. (5.22)

Если в качестве интегратора использовать RC-цепь (рис. 5.11), то для неё

, (5.23)

где - постоянная времени цепи.

Сравнивая (5.22) и (5.23) приходим к выводу, что: пассивный интегратор ведёт себя как и идеальный интегратор, только при большой постоянной времени .

Однако получение большой постоянной требует применения высокоомного резистора и конденсатора большой ёмкости. Однако резисторы с большим сопротивлением имеют большие разбросы, значительную паразитную ёмкость и высокий уровень шумов. Конденсаторы большой ёмкости очень громоздки, имеют плохие частотные характеристики, большой разброс ёмкостей и значительные паразитные утечки. Кроме того, чем выше , тем меньше коэффициент передачи интегратора (RC-цепи) на высокой частоте.

Поэтому предпочтение отдают активным интеграторам на базе ОУ (рис. 5.12).

Из (5.2) следует, что при идеальном ОУ

, (5.24)

где . (5.25)

Таким образом, если пассивная RC-цепь ведёт себя как интегратор, только при большой постоянной времени , то активный интегратор на базе идеального ОУ интегрирует при любой .

При учёте конечных значений коэффициента усиления ОУ Кд и его входного сопротивления RВХ

. (5.26)

Если RВХ>>R1 и Кд>>1 (что имеет место в реальных схемах), то

, (5.27)

т.е. реальный активный интегратор ведёт себя как инерционное звено первого порядка (как пассивная RC-цепь (5.23)), но имеет усиление Кд и эквивалентную постоянную времени

. (5.28)

Рассмотрим работу интегратора во временной области. Выходное напряжение интегратора

, (5.29)

где А – коэффициент пропорциональности с размерностью обратной времени.

Переходная характеристика (ПХ) интегратора (реакция на ступенчатое напряжение u1(t) = 1(t)U1), будет являться линейной функцией времени

. (5.30)

ПХ реального активного интегратора (оригинал функции (5.27))

, (5.31)

где t – время интегрирования. Если , то

. (5.32)

Таким образом, реальный активный интегратор по своим свойствам будет мало отличаться от идеального, если

t/э << 1 или t/ << Kд. (5.33)

Для пассивного интегратора это условие запишется как

. (5.34)

Наличие генераторов статических ошибок IВХ1, IВХ2, UСМ приводят к дополнительным погрешностям интегратора.

Входная статическая погрешность (ВСП) интегратора

(5.35)

приводит к накоплению на конденсаторе С конечного напряжения (конденсатор подзаряжается UСМ и IВХ1), это напряжение вносит в результат интегрирования некоторую ошибку.

Ошибку, связанную с входным током IВХ1, можно уменьшить с помощью симметрирующего резистора RСМ (рис. 5.12), тогда

. (5.36)

Ошибку, вызываемую напряжением UСМ, можно уменьшить, используя ОУ с низким UСМ, а также подключая параллельно конденсатору ключ (например, в схеме на рис. 5.12 в качестве ключа используется МДП-транзистор). До подачи сигнала ключ замкнут (режим «сброс») и происходит разряд конденсатора. Непосредственно перед подачей сигнала ключ размыкается, подаётся сигнал и протекает процесс интегрирования. В процессе интегрирования за счёт напряжения смещения UСМ и входного тока IВХ1 появляется ошибка интегрирования. Действительно, до подачи сигнала на выходе интегратора имелось напряжение, выражение для которого можно получить из (5.4) при R2 = 0, т.е. . При размыкании ключа и подачи сигнала u1(t), через конденсатор потечёт зарядный ток .

После истечения времени t0 на выходе интегратора появится напряжение

. (5.37)

Первые два члена в (5.37) образуют выходную статическую погрешность (выходной сдвиг) интегратора, причём основной вклад даёт второй член, который линейно растёт от времени, достигая максимального значения . Отношение t0/ часто трактуют как эквивалентный коэффициент усиления интегратора. Ошибка интегрирования за счёт выходного сдвига особенно существенна при интегрировании медленно изменяющегося сигнала или когда интегрирование ведётся на большем интервале времени. В этом случае необходимо использовать высококачественные ОУ с малыми значениями UСМ и IВХ1.

Если ОУ без ОС эквивалентен инерционному звену первого порядка с постоянной времени у, т.е.

, (5.38)

то при Кд>>1, >>RВЫХС и Kд  У ПХ интегратора будет иметь вид

. (5.39)

Первый член (5.39) есть ПХ интегратора с безинерционным ОУ (5.31). Наибольшее отличие (5.31) и (5.39) имеет место в начальный момент времени при , т.к. из-за своей инерционности ОУ не успевает отработать входной сигнал и часть этого сигнала через резистор R1 и конденсатор С проходит на выход (рис.5.13). Затем срабатывает ОУ и выходное напряжение меняется почти линейно, но с отставанием tЗ. Для коррекции такого запаздывания можно последовательно с конденсатором С включить дополнительное сопротивление

. (5.40)

Однако, как правило, эту задержку не корректируют в виду её малости.

Функциональные возможности базовой схемы интегратора (рис. 5.12) можно существенно расширить, изменив цепь ОС (табл. 5.1). В первой схеме таблицы дополнительно к интегрированию входного сигнала осуществляется суммирование результата интегрирования с входным сигналом, умноженным на отношение R2/R1. Во второй схеме показано, как проинтегрировать разность двух напряжений.

Если в этой схеме заменить резисторы генераторами токов, то на выходе получиться результат интегрирования разности токов. Способ получения двойного интеграла от входного аналогового сигнала демонстрирует последняя схема.

Таблица 5.1. Основные схемы интеграторов

Схема

Выполняемая функция

Интегратор с суммированием

Интегратор с разностью

Двойной интегратор

5.5. Дифференциатор

Дифференциатор (ДФ) – это устройство, у которого выходной сигнал пропорционален производной по времени от входного сигнала , (5.41)

или в операторной форме

. (5.42) Передаточная функция ДФ

. (5.43)

Для пассивной RC-цепи (рис. 5.14) , где - постоянная времени цепи.

Из сравнения (5.43) и (5.44) следует, что RC-цепь (пассивный ДФ) ведёт себя как идеальный ДФ, только при малой постоянной времени . Однако, уменьшение (т.е. уменьшение R и C) приводит к уменьшению коэффициента передачи ДФ на низкой частоте. Поэтому предпочтение отдают активному ДФ (рис.5.15).

Характеристики

Тип файла
Документ
Размер
8,49 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее