Шпоры (1266773), страница 2
Текст из файла (страница 2)
Необходимо подчеркнуть, что более общей формулировкой законов коммутации является положение о невозможности скачкообразного изменения в момент коммутации для схем с катушкой индуктивности – потокосцеплений, а для схем с конденсаторами – зарядов на них. В качестве иллюстрации сказанному могут служить схемы на рис. 2, переходные процессы в которых относятся к так называемым некорректным коммутациям (название произошло от пренебрежения в подобных схемах малыми параметрами, корректный учет которых может привести к существенному усложнению з адачи).
Действительно, при переводе в схеме на рис. 2,а ключа из положения 1 в положение 2 трактование второго закона коммутации как невозможность скачкообразного изменения напряжения на конденсаторе приводит к невыполнению второго закона Кирхгофа . Аналогично при размыкании ключа в схеме на рис. 2,б трактование первого закона коммутации как невозможность скачкообразного изменения тока через катушку индуктивности приводит к невыполнению первого закона Кирхгофа
. Для данных схем, исходя из сохранения заряда и соответственно потокосцепления, можно записать:
Зависимыми начальными условиями называются значения остальных токов и напряжений, а также производных от искомой функции в момент коммутации, определяемые по независимым начальным условиям при помощи уравнений, составляемых по законам Кирхгофа для . Необходимое число начальных условий равно числу постоянных интегрирования. Поскольку уравнение вида (2) рационально записывать для переменной, начальное значение которой относится к независимым начальным условиям, задача нахождения начальных условий обычно сводится к нахождению значений этой переменной и ее производных до (n-1) порядка включительно при
.
Пример. Определить токи и производные и
в момент коммутации в схеме на рис. 3, если до коммутации конденсатор был не заряжен.
В соответствии с законами коммутации
и
.
На основании второго закона Кирхгофа для момента коммутации имеет место
,
откуда
и .
Для известных значений и
из уравнения
определяется .
Значение производной от напряжения на конденсаторе в момент коммутации (см. табл. 1)
.
Корни характеристического уравнения. Постоянная времени
Выражение свободной составляющей общего решения х дифференциального уравнения (2) определяется видом корней характеристического уравнения (см. табл. 3).
Таблица 3. Выражения свободных составляющих общего решения
Вид корней характеристического уравнения | Выражение свободной составляющей |
Корни | |
Корни | |
Пары комплексно-сопряженных корней | |
Необходимо помнить, что, поскольку в линейной цепи с течением времени свободная составляющая затухает, вещественные части корней характеристического уравнения не могут быть положительными.
При вещественных корнях монотонно затухает, и имеет место апериодический переходный процесс. Наличие пары комплексно сопряженных корней обусловливает появление затухающих синусоидальных колебаний (колебательный переходный процесс).
Поскольку физически колебательный процесс связан с периодическим обменом энергией между магнитным полем катушки индуктивности и электрическим полем конденсатора, комплексно-сопряженные корни могут иметь место только для цепей, содержащих оба типа накопителей. Быстроту затухания колебаний принято характеризовать отношением
,
которое называется декрементом колебания, или натуральным логарифмом этого отношения
,
называемым логарифмическим декрементом колебания, где .
Важной характеристикой при исследовании переходных процессов является постоянная времени t, определяемая для цепей первого порядка, как:
,
где р – корень характеристического уравнения.
Постоянную времени можно интерпретировать как временной интервал, в течение которого свободная составляющая уменьшится в е раз по сравнению со своим начальным значением. Теоретически переходный процесс длится бесконечно долго. Однако на практике считается, что он заканчивается при
Характеристическое уравнение составляется для цепи после коммутации. Оно может быть получено следующими способами:
-
непосредственно на основе дифференциального уравнения вида (2) (см. лекцию №24), т.е. путем исключения из системы уравнений, описывающих электромагнитное состояние цепи на основании первого и второго законов Кирхгофа, всех неизвестных величин, кроме одной, относительно которой и записывается уравнение (2);
-
путем использования выражения для входного сопротивления цепи на синусоидальном токе;
-
на основе выражения главного определителя.
Согласно первому способу в предыдущей лекции было получено дифференциальное уравнение относительно напряжения на конденсаторе для последовательной R-L-C-цепи, на базе которого записывается характеристическое уравнение.
Следует отметить, что, поскольку линейная цепь охвачена единым переходным процессом, корни характеристического уравнения являются общими для всех свободных составляющих напряжений и токов ветвей схемы, параметры которых входят в характеристическое уравнение. Поэтому по первому способу составления характеристического уравнения в качестве переменной, относительно которой оно записывается, может быть выбрана любая.
П рименение второго и третьего способов составления характеристического уравнения рассмотрим на примере цепи рис. 1.
Составление характеристического уравнения по методу входного сопротивления заключается в следующем:
записывается входное сопротивление цепи на переменном токе;
jw заменяется на оператор р;
полученное выражение приравнивается к нулю.
Уравнение
совпадает с характеристическим.
Следует подчеркнуть, что входное сопротивление может быть записано относительно места разрыва любой ветви схемы. При этом активный двухполюсник заменяется пассивным по аналогии с методом эквивалентного генератора. Данный способ составления характеристического уравнения предполагает отсутствие в схеме магнитосвязанных ветвей; при наличии таковых необходимо осуществить их предварительное развязывание.
Для цепи на рис. 1 относительно зажимов источника
.
Заменив jw на р и приравняв полученное выражение к нулю, запишем
или
| (1) |
При составлении характеристического уравнения на основе выражения главного определителя число алгебраических уравнений, на базе которых он записывается, равно числу неизвестных свободных составляющих токов. Алгебраизация исходной системы интегро-дифференциальных уравнений, составленных, например, на основании законов Кирхгофа или по методу контурных токов, осуществляется заменой символов дифференцирования и интегрирования соответственно на умножение и деление на оператор р. Характеристическое уравнение получается путем приравнивания записанного определителя к нулю. Поскольку выражение для главного определителя не зависит от правых частей системы неоднородных уравнений, его составление можно производить на основе системы уравнений, записанных для полных токов.
Для цепи на рис. 1 алгебраизованная система уравнений на основе метода контурных токов имеет вид
Отсюда выражение для главного определителя этой системы
.
Приравняв D к нулю, получим результат, аналогичный (1).
О бщая методика расчета переходных процессов классическим методом
В общем случае методика расчета переходных процессов классическим методом включает следующие этапы:
-
Запись выражения для искомой переменной в виде
.
(2)
-
Нахождение принужденной составляющей общего решения на основании расчета установившегося режима послекоммутационной цепи.
-
Составление характеристического уравнения и определение его корней (для цепей, описываемых дифференциальными уравнениями первого порядка, вместо корней можно находить постоянную времени t - см. лекцию №26). Запись выражения свободной составляющей в форме, определяемой типом найденных корней.
-
Подстановка полученных выражений принужденной и свободной составляющих в соотношение (2).
-
Определение начальных условий и на их основе – постоянных интегрирования.
Примеры расчета переходных процессов классическим методом
1. Переходные процессы в R-L цепи при ее подключении
к источнику напряжения
Такие процессы имеют место, например, при подключении к источнику питания электромагнитов, трансформаторов, электрических двигателей и т.п.
Рассмотрим два случая:
а)
б) .
Согласно рассмотренной методике для тока в цепи на рис. 2 можно записать
| (3) |
Тогда для первого случая принужденная составляющая тока
| (4) |
Характеристическое уравнение
,
о ткуда
и постоянная времени
.
Таким образом,
| (5) |
Подставляя (4) и (5) в соотношение (3), запишем