МУ - О равномерной непрерывности функций - Кожевников (1238753), страница 3
Текст из файла (страница 3)
®£« á® ¯à¥¤«®¦¥¨î 9 ©¤ãâáï ¯®áâ®ïë¥ k¨ b â ª¨¥, çâ® ∀ x ∈ E ¢ë¯®«¥® |f (x + c) − f (x)| 6 kc + b.12¤à¨¬¥à 8. (2010-4) ®ª ¦¨â¥, çâ® äãªæ¨ï f= (1, +∞),®©. f (x) = x2 cos ln x,: E → R, £¤¥ E =¥ ï¥âáï à ¢®¬¥à® ¥¯à¥àë¢-12 ª ¢¨¤® ¨§ ¤®ª § ⥫ìá⢠, ¯à¥¤«®¦¥¨¥ 11 ¬®¦® ®¡®¡é¨âì, § ¬¥¨¢¢áî¤ã ç¨á«® c ®£à ¨ç¥ãî äãªæ¨î c(x), ®¯à¥¤¥«¥ãî E .13¥è¥¨¥. ।¯®«®¦¨¬ ¯à®â¨¢®¥ ¨, ¢®á¯®«ì§®¢ ¢è¨áì ¯à¥¤«®-¦¥¨¥¬ 10, ©¤¥¬ ç¨á« k ¨ b â ª¨¥, çâ® ∀ x ∈ [2, +∞) ¢ë¯®«¥®|f (x)| 6 kx + b. ©¤¥¬ â ª®¥ m ∈ [2, +∞), çâ® ∀ x ∈ [m, +∞) ¢ë¯®«¥® x2 > kx + b. ®¤¡¥à¥¬ n ∈ N â ª, ç⮡ë ç¨á«® x0 = e2πn¡ë«® ¡®«ìè¥ m.
®£¤ f (x0 ) = x20 cos ln x0 = x20 > kx0 + b. ®«ã祮¯à®â¨¢®à¥ç¨¥.13 ¤à¨¬¥à 9. (2003-2)√®ª ¦¨â¥, çâ® äãªæ¨ï f= (0, +∞), f (x) =x sin x,: E → R, £¤¥ E =¥ ï¥âáï à ¢®¬¥à® ¥¯à¥à뢮©.¥è¥¨¥. ᨫ㠯।«®¦¥¨ï 11 ¤®áâ â®ç® ¤®ª § âì, çâ® äãª-æ¨ï g(x) = f (x + π2 ) − f (x) ¥ ï¥âáï ®£à ¨ç¥®©. ⮢¥à®, â ªpª ª ¯à¨ âãà «ìëå k ¢ë¯®«¥® f (2πk+ π2 )−f (2πk) = 2πk + π2 .14¤à¨¬¥à 10. (2010-1) ®ª ¦¨â¥,çâ® äãªæ¨ï f : E → R, £¤¥ E =√= (0, +∞), f (x) = x sinx,¥ ï¥âáï à ¢®¬¥à® ¥¯à¥à뢮©.¥è¥¨¥. ।¯®«®¦¨¬ ¯à®â¨¢®¥.
®«®¦¨¬ xn= (2πn)2 , yn == (2πn +â ª, çâ® f (xn ) = 0, f (yn ) = yn = (2πn +> n2 . ®£¤ 12|yn − xn | = yn − xn = π (2n + 4 ) < 30n.®£« á® ¯à¥¤«®¦¥¨î 9 ¤®«¦ë áãé¥á⢮¢ âì k ¨ b â ª¨¥, ç⮤«ï ¢á¥å n ¢ë¯®«¥® |f (xn )−f (yn )| 6 k|xn −yn |+b. ®£¤ ¯®«ãç ¥¬n2 6 30kn+b, çâ® ¥¢¥à® ¯à¨ ¤®áâ â®ç® ¡®«ìè¨å n. à®â¨¢®à¥ç¨¥.¤π 22)π 22)« £®¤ à®áâì. ®áâ ¢¨â¥«ì í⮣® ¯®á®¡¨ï ¡« £®¤ à¥ à¥æ¥§¥âã § àï¤ ¯®«¥§ëå § ¬¥ç ¨©.13 ⬥⨬, çâ® ¯à¨¬¥à 8 ¥ 㤠¥âáï à¥è¨âì á ¯®¬®éìî ¯à¥¤«®¦¥¨ï 8.14 § à¥è¥¨ï ¢¨¤®, çâ® ¢¬¥áâ® f (x) = x cos x ¬®¦® ¢§ïâì «î¡ãî äãªæ¨î¢¨¤ h(x) cos x ¨«¨ h(x) sin x (¨«¨ ¤ ¦¥ h(x) cosα x ¨«¨ h(x) sinα x ¤«ï α > 1), £¤¥h(x) 㤮¢«¥â¢®àï¥â ãá«®¢¨î lim h(x) = ∞.x→+∞14 ¤ ç¨ § ¤ ç å 1|5 âॡã¥âáï ¢ëïá¨âì, ï¥âáï «¨ ¤ ï äãªæ¨ïf : E → R à ¢®¬¥à® ¥¯à¥à뢮©. ¤ ç 1.f (x) = xα ,£¤¥ α ∈ R; E = (0, +∞). ¤ ç 2.f (x) = ln x¤«ï ) E = (1, +∞); ¡) E = (0, 1). ¤ ç 3.
(2003-3) )f (x) =E = (0, +∞)(¤«ï ) ¨ ¤«ï ¡)). ¤ ç 4.f (x) = xα sin xβ ,∗1ln(1 + x2 );x¡)f (x) =1arctg x2 ;x£¤¥ α, β > 0; E = (0, +∞). ¤ ç 5. ∗ (2003-1) f (x) = sin(x sin x); E = (0, +∞). ¤ ç 6. ) ãáâì ¤ äãªæ¨ïf : E → R, £¤¥ E = E 0 ∪ E 00 .§¢¥áâ®, çâ® á㦥¨ï äãªæ¨¨ f E 0 ¨ E 00 ïîâáï à ¢®¬¥à® ¥¯à¥àë¢ë¬¨ äãªæ¨ï¬¨. ¡ï§ â¥«ì® «¨ f : E → Rà ¢®¬¥à® ¥¯à¥àë¢ ?¡) ®ª ¦¨â¥, çâ® ¥á«¨ ¢ ãá«®¢¨ïå ¯ãªâ ) E 0 ⊂ R § ¬ªãâ®, E 00 ª®¬¯ ªâ®, â® f : E → R à ¢®¬¥à® ¥¯à¥àë¢ . ¤ ç 7. ãáâì äãªæ¨ï f : [a, +∞) → R ¥¯à¥àë¢ , ¯à¨ç¥¬ ¤«ï¥ª®â®à®£® b > a äãªæ¨ï f (x) ¤¨ää¥à¥æ¨à㥬 [b, +∞), ¨ f 0®£à ¨ç¥ [b, +∞).
®ª ¦¨â¥, çâ® f à ¢®¬¥à® ¥¯à¥àë¢ . ¤ ç 8. ®ª ¦¨â¥, çâ® «î¡ ï ¥¯à¥àë¢ ï ¯¥à¨®¤¨ç¥áª ïäãªæ¨ï f:R→Rï¥âáï à ¢®¬¥à® ¥¯à¥à뢮©. ¤ ç 9. ) ãáâì äãªæ¨¨ f : E → R ¨ g : E → R à ¢®¬¥à®¥¯à¥àë¢ë. ®ª ¦¨â¥, çâ® f ± g ¨ λf (λ ∈ R) â ª¦¥ à ¢®¬¥à®¥¯à¥àë¢ë.¡) ãáâì f : E → R à ¢®¬¥à® ¥¯à¥àë¢ , g : E → R ¥ ï¥âáï à ¢®¬¥à® ¥¯à¥à뢮©. ®ª ¦¨â¥, çâ® f + g ¥ ï¥âáïà ¢®¬¥à® ¥¯à¥à뢮©.15 ¤ ç 10.
®ª ¦¨â¥, çâ® ¥á«¨¨¬¥¥â ª«®ãî ᨬ¯â®â㠯ਯà¥àë¢ .f : [a, +∞) → R ¥¯à¥àë¢ ¨x → +∞, â® f à ¢®¬¥à® ¥- ¤ ç 11. (1991-3) ãé¥áâ¢ã¥â «¨ äãªæ¨ï à ¢®¬¥à® ¥¯à¥-àë¢ ï ¨ ¤¨ää¥à¥æ¨à㥬 ï äãªæ¨ï f : [a, +∞) → R â ª ï, çâ®lim f (x) = ∞, ¨ ∀ b > a äãªæ¨ï f 0 | ¥®£à ¨ç¥ ï [b, +∞)?x→+∞ ¤ ç 12. ãáâì äãªæ¨¨ f : E → R ¨ g : R → R à ¢®¬¥à® ¥¯à¥àë¢ë. ®ª ¦¨â¥, çâ® ¨å ª®¬¯®§¨æ¨ï g ◦f : E → R à ¢®¬¥à®¥¯à¥àë¢ . (® ®¯à¥¤¥«¥¨î ª®¬¯®§¨æ¨¨ (g ◦ f )(x) = g(f (x)).) ¤ ç 13. (1991-1) ãáâì f : [0, +∞) → R ¥¯à¥àë¢ [0, +∞)¨ x→+∞lim f (x) = ∞.
®ª ¦¨â¥, çâ® äãªæ¨ï arctg f (x) à ¢®¬¥à®¥¯à¥àë¢ [0, +∞). ¤ ç 14. ®ª ¦¨â¥ ªà¨â¥à¨© ¤«ï äãªæ¨¨ f : [a, +∞) → R:f ï¥âáï à ¢®¬¥à® ¥¯à¥à뢮© ⇔ ∀ b > 0 ∃ k > 0 â ª®¥, çâ®∀ x, y ∈ [a, +∞) ¢ë¯®«¥® |f (x) − f (y)| 6 k|x − y| + b. ¤ ç 15. ãáâìâ¥£à «+∞Rf (x) dxaf : [a, +∞) → Rà ¢®¬¥à® ¥¯à¥àë¢ ¨ ¨-á室¨âáï. ®ª ¦¨â¥, çâ® x→+∞lim f (x) = 0. § ¤ ç å 16|17 à¥çì ¨¤¥â ® à ¢®¬¥à®© ¥¯à¥à뢮á⨠äãªæ¨© ¤¢ã寥६¥ëå f : E → R, £¤¥ E ⊂ R2 . ¤ ç 16.
ãáâìE ⊂ R2 | ¢ë¯ãª« ï ®¡« áâì, äãªæ¨ï f : E → R â ª®¢ , çâ® ç áâë¥ ¯à®¨§¢®¤ë¥ ∂f¨ ∂fáãé¥áâ¢ãîâ ¢ ª ¦¤®© â®çª¥ E ¨∂x∂yïîâáï ®£à ¨ç¥ë¬¨ E äãªæ¨ï¬¨. ®ª ¦¨â¥, çâ® f à ¢®¬¥à®¥¯à¥àë¢ . ¤ ç 17. ¢«ï¥âáï «¨ f à ¢®¬¥à® ¥¯à¥à뢮© ¢ ®¡« á⨠E ⊂ R2 , £¤¥ ) (2007-1) f (x, y) = sin x2 +y12 +2y , E = {x2 + y2 + y < 0};1¡) (2007-2) f (x, y) = sin 2x2 −2xy+y2 , E = {x > 0, y < 1, y > x};1¢) (2007-4) f (x, y) = cos x2 +y2 −2x , E = {−1 < y < 1, 2 < x < 3}?16⢥âë, 㪠§ ¨ï ¨ à¥è¥¨ï1.
⢥â: f à ¢®¬¥à® ¥¯à¥àë¢ ⇔ α ∈ [0, 1].ਠα > 1 ¬®¦® ¢®á¯®«ì§®¢ âìáï ¯à¥¤«®¦¥¨¥¬ 8. ®£« ᮯ।«®¦¥¨î 4 ¯à¨ α < 0 äãªæ¨ï f ¥ ï¥âáï à ¢®¬¥à® ¥¯à¥à뢮© ¤ ¦¥ (0, 1).ਠα ∈ (0, 1] ¬®¦® ¤®ª § âì, çâ® ¯à¨¬¥¨¬® ¯à¥¤«®¦¥¨¥ 5,«¨¡® ¢®á¯®«ì§®¢ âìáï § ¤ 祩 7.2. ⢥â: ) ¤ (à ¢®¬¥à® ¥¯à¥àë¢ ); ¡) ¥â. ) á«¥¤ã¥â ¨§ ¯à¥¤«®¦¥¨ï 6, ¡) | ¨§ ¯à¥¤«®¦¥¨ï 4.3. ⢥â: ) ¤ ; ¡) ¤ .®¦® ¢®á¯®«ì§®¢ âìáï ¯à¥¤«®¦¥¨¥¬ 7.4. ⢥â: à ¢®¬¥à® ¥¯à¥àë¢ ⇔ α + β 6 1.ਠα+β 6 1 äãªæ¨ï f (x) ¯à®¤®«¦ ¥âáï ¤® ¥¯à¥à뢮© äãªæ¨¨ [0, +∞), ¨¬¥¥î饩 ®£à ¨ç¥ãî ¯à®¨§¢®¤ãî [1, +∞)(á¬. § ¤ çã 7). ᫨ ¦¥ α+β > 1, ¬®¦® áâநâì ¯à®â¨¢®à¥ç¨¥ á ¯à¥¤«®¦¥¨¥¬ 9â ª ¦¥, ª ª ¨ ¢ ¯à¨¬¥à¥ 10.
®«®¦¨¬ xn = (2πn) , yn = (2πn + π2 ) ,â ª çâ® f³(xn ) = 0, f (yn´) = ynα = (2πn + π2 ) . ®£¤ |yn − xn | =¢¡1= (2πn)1 + 4n− 1 . ਠn → ∞ ¨¬¥¥¬ |f (xn ) − f (yn )| ∼ c1 n1(c1 > 0 | ª®áâ â ); |yn − xn | ∼ (2πn) · 4βn∼ c2 n −1 (c2 > 0| ª®áâ â ).
ª ª ª β1 − 1 < αβ , â® ¯à¨ ¤®áâ â®ç® ¡®«ìè¨å n¥à ¢¥á⢮ |f (xn ) − f (yn )| 6 k|xn − yn | + b (k ¨ b 䨪á¨à®¢ ë) ¥¢ë¯®«¥®. ®«ãç ¥âáï ¯à®â¨¢®à¥ç¨¥ c ¯à¥¤¯®«®¦¥¨¥¬ 9.5. ⢥â: ¥â. ®â१ª¥ [2πn, 2πn + π2 ] äãªæ¨ï h(x) = x sin x ¥¯à¥àë¢ ¨¬®®â®® ¢®§à á⠥⠮â 0 ¤® 2πn + π2 .
ãáâì 2πn < x1 < y1 << x2 < y2 < . . . < xn < yn = 2πn + π2 | â ª¨¥ â®çª¨, çâ® h(xk ) == 2πk , h(yk ) = 2πk + π2 . ®£¤ sin yk − sin xk = 1 − 0 = 0, ¤«¨ πå®âï ¡ë ®¤®£® ¨§ ®â१ª®¢ [xk , yk ] ¬¥ìè¥, 祬 2n. ਠ¤®áâ â®ç®1β1βαβ1β1βαβ1β1β17¡®«ìè¨å n ¯®«ãç ¥âáï ¯à®â¨¢®à¥ç¨¥ á ®¯à¥¤¥«¥¨¥¬ à ¢®¬¥à®©¥¯à¥à뢮áâ¨.6. ) ⢥â: ¥â.ãáâì E 0 ∩ E 00 = ∅, ¨ inf |x0 − x00 | = 0.15 ®£¤ ¤®áâ â®ç®x0 ∈E 0 ,x00 ∈E 00à áᬮâà¥âì äãªæ¨î, à ¢ãî 1 E 0 ¨ à ¢ãî 0 E 00 .¡) ।¯®«®¦¨¢ ¯à®â¨¢®¥, ¬®¦® ¤«ï ¥ª®â®à®£® ε > 0 ¢ë¡à â쯮᫥¤®¢ ⥫ì®á⨠â®ç¥ª x01 , x02 , . .
. ∈ E 0 , x001 , x002 , . . . ∈ E 00 â ª¨¥, çâ®lim |x0 − x00k | = 0, ® |f (x0k ) − f (x00k )| > ε ¯à¨ ¢á¥å k . ᨫ㠪®¬n→∞ k¯ ªâ®á⨠E 00 ¬®¦® áç¨â âì, çâ® (x00k ) á室¨âáï ª x0 ∈ E 00 . ®£¤ ¨ (x0k ) á室¨âáï ª x0 , ¯®í⮬ã x0 ∈ E 0 (â ª ª ª E 0 § ¬ªãâ®). ªª ª á㦥¨ï f E 0 ¨ E 00 ¥¯à¥àë¢ë ¢ â®çª¥ x0 , â® lim f (x0k ) =k→∞= lim f (x00k ) = f (x0 ).
à®â¨¢®à¥ç¨¥. 16k→∞7. ® ⥮६¥ â®à ¨ ¯à¥¤«®¦¥¨î 6 äãªæ¨ï f à ¢®¬¥à® ¥-¯à¥àë¢ ª ¦¤®¬ ¨§ ¬®¦¥á⢠[a, c] ¨ [b, +∞). áâ ¥âáï ¯®«®¦¨âì¨ ¢®á¯®«ì§®¢ âìáï § ¤ 祩 6. ®¦® â ª¦¥ ¯®«®¦¨âì c > b(ᤥ« âì " å«¥áâ") ¨ ¤ «¥¥ ¤®ª § âì à ¢®¬¥àãî ¥¯à¥à뢮áâ쯮 ®¯à¥¤¥«¥¨î, ª ª í⮠ᤥ« ® ¢ ¤®ª § ⥫ìá⢥ ¯à¥¤«®¦¥¨ï 7.8. ãáâì T > 0 | ¤«¨ ¯¥à¨®¤ . «ï «î¡ëå x1 , x2 ∈ R â ª¨å, çâ®|x1 − x2 | < T ©¤¥âáï k ∈ Z â ª®¥, çâ® x1 + kT, x2 + kT ∈ [0, 2T ].®í⮬ã à ¢®¬¥àãî ¥¯à¥à뢮áâì f ¬®¦® ¢ë¢¥á⨠¨§ ⮣®, çâ®á㦥¨¥ f ®â१®ª [0, 2T ] | à ¢®¬¥à® ¥¯à¥àë¢ ï äãªæ¨ï.9. ⢥ত¥¨¥ ) ¥á«®¦® ¢ë¢®¤¨âáï ¨§ ®¯à¥¤¥«¥¨©.
®ª ¦¥¬, ¯à¨¬¥à, à ¢®¬¥àãî ¥¯à¥à뢮áâì äãªæ¨¨ f + g ¨áå®¤ï ¨§à ¢®¬¥à®© ¥¯à¥à뢮á⨠f ¨ g. «ï ¤ ®£® ε > 0 ¢ë¡¥à¥¬δ > 0 â ª®¥, çâ® ¯à¨ |x1 − x2 | < δ ¢ë¯®«¥® |f (x1 ) − f (x2 )| < 2ε ¨|g(x1 )−g(x2 )| < 2ε . ®£¤ ¯à¨ |x1 −x2 | < δ ¢ë¯®«¥® |(f (x1 )+g(x1 ))−− (f (x2 ) + g(x2 ))| 6 |f (x1 ) − f (x2 )| + |g(x1 ) − g(x2 )| < ε.17¡) ।¯®«®¦¨¬ ¯à®â¨¢®¥: ¯ãáâì äãªæ¨ï h = f + g ï¥âáïc = b15 â® ¬®¦¥â ¢ë¯®«ïâìáï ¨ ¤«ï § ¬ªãâëå ¬®¦¥á⢠E 0 ¨ E 00 .16 ãªâ ¡) «¥£ª® ®¡®¡é¨âì á«ãç © ¯®«®£® ¨ ª®¬¯ ªâ®£® ¬¥âà¨ç¥áª¨å¯à®áâà á⢠E 0 ¨ E 00 .17 ⢥ত¥¨¥ ), ¯® áãâ¨, ®§ ç ¥â, çâ® à ¢®¬¥à® ¥¯à¥àë¢ë¥ äãªæ¨¨E → R ®¡à §ãîâ «¨¥©®¥ ¯à®áâà á⢮.18à ¢®¬¥à® ¥¯à¥à뢮©.
®£¤ ᮣ« á® ) äãªæ¨ï g = h−f ⮦¥à ¢®¬¥à® ¥¯à¥àë¢ . à®â¨¢®à¥ç¨¥.10. ® ãá«®¢¨î f (x) = (kx + b) + g(x), £¤¥ k ¨ b | ¥ª®â®àë¥ ª®áâ âë, g : [a, +∞) → R ¥¯à¥àë¢ ¨ x→+∞lim g(x) = 0. ®£« ᮯ।«®¦¥¨î 7 g à ¢®¬¥à® ¥¯à¥àë¢ . ®á¯®«ì§®¢ ¢è¨áì § ¤ 祩 9, ¯®«ãç ¥¬, çâ® ¨ f à ¢®¬¥à® ¥¯à¥àë¢ .11. ⢥â: ãé¥áâ¢ã¥â.®á¯®«ì§®¢ ¢è¨áì § ¤ 祩 9 (¨«¨ 10), ã¦ë© ¯à¨¬¥à ¬®¦®¯®áâநâì ª ª f (x) = x + g(x), £¤¥ g : [a, +∞) → R | ¤¨ää¥à¥æ¨à㥬 ï äãªæ¨ï â ª ï, çâ® x→+∞lim g(x) = 0, ¨ ∀ b > a äãªæ¨ï g 0 |¥®£à ¨ç¥ ï [b, +∞) (£®¤¨âáï, ᪠¦¥¬, äãªæ¨ï g(x) = sinxx¨§ ¯à¨¬¥à 5).12. ᨫã à ¢®¬¥à®© ¥¯à¥à뢮á⨠g, ¤«ï ¤ ®£® ε > 0 ©¤¥âáï δ1 > 0 â ª®¥, çâ® ∀ y1 , y2 ∈ R, 㤮¢«¥â¢®àïîé¨å ãá«®¢¨î|y1 − y2 | < δ1 , ¢ë¯®«¥® |g(y1 ) − g(y2 )| < ε.
ᨫã à ¢®¬¥à®© ¥¯à¥à뢮á⨠f , ¤«ï â ª®£® δ1 ©¤¥âáï δ > 0 â ª®¥, çâ®∀ x1 , x2 ∈ E , 㤮¢«¥â¢®àïîé¨å ãá«®¢¨î |x1 − x2 | < δ , ¢ë¯®«¥®|f (x1 ) − f (x2 )| < δ1 . ®«ãç ¥¬, çâ® ¤«ï ¢á¥å â ª¨å x1 , x2 ¢ë¯®«¥®|g(f (x1 )) − g(f (x2 ))| < ε.13. ®¦® ¢®á¯®«ì§®¢ âìáï § ¤ 祩 12.1814. ®ª § âì ã⢥ত¥¨¥ ¢ ®¤ã áâ®à®ã ¬®¦®, ¯®¢â®àïï ¤®ª § ⥫ìá⢮ ¯à¥¤«®¦¥¨ï 9, ¢¬¥áâ® ε = 1 ¯®«®¦¨¢ ε = b. ®¡à âãî áâ®à®ã ã⢥ত¥¨¥ ¬®¦® ¤®ª § âì ¯® ®¯à¥¤¥«¥¨î à ¢®¬¥à®© ¥¯à¥à뢮áâ¨, ¢§ï¢ b = 2ε ¨ δ = 2kε .15. ।¯®«®¦¨¢, çâ® ã⢥ত¥¨¥ ¥¢¥à®, ©¤¥¬ â ª®¥ ε > 0, çâ®∀ c > a ∃ xc > c, ¤«ï ª®â®à®£® |f (xc )| > ε.
§ ãá«®¢¨ï à ¢®¬¥à®©¥¯à¥à뢮á⨠᫥¤ã¥â, çâ® ©¤¥âáï δ > 0 (§ ¢¨áï饥 ®â ε, ® ¥§ ¢¨áï饥®â c) â ª®¥,çâ® |f (x)| > 2ε |f (x)| > 2ε ¯à¨ x ∈ [xc −δ, xc +δ].¯¯3®£¤ ¯ xcR+δ¯¯¯f (x)¯ > 2δ ·¯¯xc −δ¯ε218 ।¯®«®¦¥¨¥ ® ⮬, çâ®= εδ .â® ¯à®â¨¢®à¥ç¨â ªà¨â¥à¨î ®è¨lim f (x) = ∞,x→+∞ï¥âáï «¨è¨¬ ãá«®¢¨¥¬.19¤«ï á室¨¬®á⨠¤ ®£® ¢ ãá«®¢¨¨ ¨â¥£à « .1916. ãáâì ¬®¤ã«¨ ç áâëå ¯à®¨§¢®¤ëå ¥ ¯à¥¢®á室ïâ C . ®£¤ ¢¥à® á«¥¤ãî饥 ã⢥ত¥¨¥: ¤«ï «î¡ëå ¤¢ãå â®ç¥ª M, N ∈ E , ¨¬¥îé¨å à ¢ãî ¡áæ¨áá㨫¨ ®à¤¨ âã, ¢ë¯®«¥® |f (M ) − f (N )| < C|M N |.