Computer Science. The English Language Perspective - Беликова (1176925), страница 45
Текст из файла (страница 45)
Thisability of a quantum system to be in multiple states at the sametime is called superposition. The simplest case, storing twovalues at once, is called a “qubit” (short for “quantum bit”). In1985, David Deutsch at Oxford University fleshed outFeynman’s ideas by creating an actual design for a “quantumcomputer”, including an algorithm to be run on it.At the time of Feynman’s proposal, the techniques formanipulating individual atoms or even particles had not yetbeen developed, so a practical quantum computer could not bebuilt. However, during the 1990s, considerable progress wasmade, spurred in part by the suggestion of Bell Labs researcherPeter Shor, who outlined a quantum algorithm that might beused for rapid factoring of extremely large integers. Since thesecurity of modern public key cryptography depends on thedifficulty of such factoring, a working quantum computerwould be of great interest to spy agencies.The reason for the tremendous potential power of quantumcomputing is that if each qubit can store two valuessimultaneously, a register with three qubits can store eightvalues, and in general, for n qubits one can operate on 2n valuessimultaneously.
This means that a single quantum processormight be the equivalent of a huge number of separateprocessors. Clearly many problems that have been considerednot practical to solve might be tackled with quantumcomputers.Quantum computers also utilize another aspect of quantummechanics known as entanglement. Unfortunately, quantumparticles cannot be observed without being altered. Scientistsuse their knowledge of entanglement to indirectly observe thevalue of a qubit. When two subatomic particles becomeentangled, one particle adopts the properties of the other.Without looking at the qubit itself, scientists can read its valueby observing the behavior of a particle with which it isentangled.268There are many potential applications for quantum computing.While the technology could be used to crack conventionalcryptographic keys, researchers have suggested that it couldalso be used to generate unbreakable keys that depend on the“entanglement” of observers and what they observe.
The sheercomputational power of a quantum computer might make itpossible to develop much better computer models of complexphenomena such as weather, climate, and the economy – or ofquantum behavior itself.As of 2014 quantum computing is still in its infancy butexperiments have been carried out in which quantumcomputational operations were executed on a very smallnumber of qubits. Both practical and theoretical researchcontinues, and many national governments and militaryfunding agencies support quantum computing research todevelop quantum computers for both civilian and nationalsecurity purposes, such as cryptanalysis.Notes:Bell Labs (Bell Laboratories) - бывшая американская, а нынефранко-американскаякорпорация,крупныйисследовательский центр в области телекоммуникаций,электронных и компьютерных систем.
Штаб-квартира BellLabs расположена в Мюррей Хилл (Нью-Джерси, США)Assignments1. Translate the sentences from the text into Russian inwriting paying attention to the underlined words andphrases:1. However, during the 1990s, considerable progress wasmade, spurred in part by the suggestion of Bell Labsresearcher Peter Shor, who outlined a quantum2692.3.4.5.algorithm that might be used for rapid factoring ofextremely large integers.Since the security of modern public key cryptographydepends on the difficulty of such factoring, a workingquantum computer would be of great interest to spyagencies.Unfortunately, quantum particles cannot be observedwithout being altered.As of 2014 quantum computing is still in its infancy butexperiments have been carried out in which quantumcomputational operations were executed on a very smallnumber of qubits.Both practical and theoretical research continues.2.
Answer the following questions:1. What is the basis of electronic digital computing?2. What provocative idea did physicist Richard Feynmancome up with?3. Why could a practical quantum computer not be built atthe time of Feynman’s proposal?4. Describe the reason for a huge potential power ofquantum computing.5. What aspects of quantum mechanics do quantumcomputers utilize?6. How can quantum computing be applied?3.
Translate into English:Современные компьютерные чипы могут содержать донесколькихмиллиардовтранзисторовнаодномквадратном сантиметре кремния, а в будущем подобныеэлементы не будут превышать размера молекулы.Устройства с такими чипами будут существенноотличаться от классических компьютеров. Это обусловленотем, что принципы их работы будут основаны на270квантовой механике, физических законах, объясняющихповедение атомов и субатомных частиц. Ученые надеются,чтоквантовыекомпьютерысмогутрешатьрядспецифических задач гораздо быстрее, чем их классическиесобратья.В действительности создать квантовый компьютернепросто.
Основные его элементы - атомы, фотоны илиспециально созданные микроструктуры, хранящие данныев так называемых кубитах (квантовых битах), особенностькоторых заключается в том, что они должны отвечать двумпротиворечивым требованиям. С одной стороны онидолжны быть достаточно изолированы от любых внешнихвоздействий, которые могут нарушить вычислительныйпроцесс, а с другой - иметь возможность взаимодействоватьс другими кубитами. Кроме того необходимо иметьвозможность измерить окончательное состояние кубитов иотобразить результаты вычислений.Ученые во всем мире используют несколько подходовдля создания первых прототипов квантовых компьютеров.4.
Give the summary of the text using the key terms.BIOINFORMATICSRead the following words and word combinations and usethem for understanding and translation of the text:undertaking - предприятие, начинание, делоinherently - по существуgene - генintricate - сложный, запутанныйprotein folding - сворачивание белковunlikely - невероятный, малообещающийto harness - использовать271simulation - моделированиеmakeup - состав, структура, строениеadvent - приход, появлениеpredator - хищникto devise - разрабатывать, придумывать, изобретатьsophisticated - сложныйfeasible- возможный, осуществимыйto probe - исследовать, прозондироватьto bridge the gap - устранить разрывemergent behavior - непредсказуемое поведениеto inspire - вдохновлять, воодушевлятьBroadly speaking, bioinformatics (and the related field ofcomputational biology) is the application of mathematical andinformation-science techniques to biology.
This undertaking isinherently difficult because a living organism represents such acomplex interaction of chemical processes. As more has beenlearned about the genome of humans and other organisms, ithas become increasingly clear that the ”programs” representedby gene sequences are “interpreted” through complexinteractions of genes and the environment. Given thiscomplexity, the great strides that have been made in geneticsand the detailed study of metabolic and other biologicalprocesses would have been impossible without advances incomputing and computer science.Application to genetics.Since information in the form of DNA sequences is the heart ofgenetics, information science plays a key role in understandingits significance and expression.
The sequences of genes thatdetermine the makeup and behavior of organisms can berepresented and manipulated as strings of symbols using, forexample, indexing and search algorithms. It is thus natural thatthe advent of powerful computer workstations and automatedlab equipment would lead to the automation of genesequencing, comparing or determining the relationship272between corresponding sequences. The completion of thesequencing of the human genome well ahead of schedule wasthus a triumph of computer science as well as biology.From genes to protein.Gene sequences are only half of many problems in biology.Computational techniques are also being increasingly appliedto the analysis and simulation of the many intricate chemicalsteps that link genetic information to expression in the form ofparticular protein and its three-dimensional structure in theprocess known as protein folding.
The development of betteralgorithms and more powerful computing architectures forsuch analysis can further speed up research, avoid wasteful“dead ends”, and bring effective treatments for cancer andother serious diseases to market sooner. The unlikely platformof a Sony PlayStation 3 and its powerful processor has beenharnessed to turn gamers’ idle time to the processing of proteinfolding data in the Folding@Home project.SimulationA variety of other types of biological computer simulation havebeen employed. Examples include the chemical componentsthat are responsible for metabolic activity in organisms, thestructure of the nervous system and the brain (neural network),and the interaction of multiple predators and food sources in anecosystem. Simulations can also incorporate algorithms firstdevised by artificial intelligence researchers (geneticalgorithms).
Simulations are combined with sophisticatedgraphics to enable researchers to visualize structure.Visualization algorithms developed for biomedical research canalso be applied to the development of advanced MRI and otherscans for use in diagnosis and therapy.A fruitful relationshipBioinformatics has been one of the ”hottest” areas in computingin recent years, often following trends in the broader “biotech”273sector.
This challenging field involves such diverse subjects asgenetics, biochemistry, physiology, mathematics (structural andstatistical), database analysis and search techniques, simulation,modeling, graphics and image analysis. Major projects ofteninvolve close cooperation between bioinformatics specialistsand other researchers. Researchers must also consider how theavailability of ever-increasing computing power might makepreviously impossible projects feasible.The relationship between biology and computer science seemsdestined to be even more fruitful in coming years.
As softwaretools allow researchers to probe ever more deeply intobiological processes and to bridge the gap between physics,biochemistry, and the emergent behavior of the livingorganisms, understanding of those processes may in turninspire the creation of new architectures and algorithms inareas such as artificial intelligence and robotics.Notes:DNA (Deoxyribonucleic acid) - дезоксирибонуклеиноваякислота (ДНК)- макромолекула, обеспечивающая хранение,передачу из поколения в поколение и реализациюгенетической программы развития и функционированияживых организмов.Folding@Home - проект распределенных вычислений дляпроведения компьютерного моделирования свертываниямолекул белкаMRI (Magnetic Resonance Imaging) – магнитно-резонанснаятомографияAssignments1. Translate the sentences from the text into Russian inwriting paying attention to the underlined words andphrases.2741.