Диссертация (1173032), страница 18
Текст из файла (страница 18)
Pang, A.J. Palmisano // Appl.Spectrosc. – 1992. – V.46 (1). – P. 73–78.11862.Frost, R.L. The dehydroxylation of the kaolinite clay minerals using infraredemission spectroscopy / R.L. Frost. A.M. Vassallo. Clay Clay Miner. – 1996. – V.44(5).
– P. 635–651.63.Djemai, A. Behavior of paramagnetic iron during the thermal transformations ofkaolinite / A. Djemai, E. Balan, G. Morin, G. Hernandez, J.C. Labbe, J.P. Muller // J.Am. Ceram. Soc. – 2001. – V.84 (5). – P. 1017–1024.64.Dion, P. Kinetic study by controlled-transformation rate thermal analysis of thedehydroxylation of kaolinite / P. Dion, J.F. Alcover, F.
Bergaya, A. Ortega, P.L.Llewellyn, F. Rouquerol // Clay Miner. – 1998. – V.33 (2). – P. 269–276.65.Kristóf, J. Thermoanalytical investigations on intercalated kaolinites / J. Kristóf,R. Frost, E. Horváth, L. Kocsis, J. Inczédy // J. Therm. Anal. Calorim. – 1998. – V.53(2). – P. 467–475.66.Smith, M.E.
Structural characterization of the thermal transformation ofhalloysite by solid-state NMR / M.E. Smith, G. Neal, M.B. Trigg, J. Drennan // Appl.Magn. Reson. – 1993. – V.4 (1-2). – P. 157–170.67.Okada, K. Characterization of spinel phase formed in the kaolin–mullite thermalsequence / K.
Okada, N. ŌTsuka, J. Ossaka // J. Am. Ceram. Soc. – 1986. – V.69 (10).– P. 251–253.68.Sonuparlak, B. Spinel phase formation during the 980 °C exothermic reaction inthe kaolinite-to-mullite reaction series / B. Sonuparlak, M. Sarikaya, I.A. Aksay // J.Am. Ceram. Soc. – 1987. – V.70 (11). – P.
837–842.69.Antill, S.J. Halloysite: a low-cost alternative nanotube. Aust / S.J. Antill // J.Chem. – 2003. – V.56 (7). – P. 723–723.70.Abdullayev, E. Halloysite clay nanotubes for controlled release of protectiveagents / E. Abdullayev, Y. Lvov // J. Nanosci. Nanotechnol. – 2011. – V.11 (11). – P.1007–10026.71.Yuan, P. Organosilane functionalization of halloysite nanotubes for enhancedloading and controlled release / P. Yuan, P.D. Southon, Z.W. Liu, C.J. Kepert //Nanotechnology.
– 2012b. – V.23 (37).11972.Ouyang, J. High morphological stability and structural transition of halloysite(Hunan, China) in heat treatment / J. Ouyang, Z. Zhou, Y. Zhang, H. Yang // Appl. ClaySci. – 2014. – V.101. – P. 16–22.73.Joo, Y. Opening and blocking the inner-pores of halloysite / Y. Joo, J.H.
Sim, Y.Jeon, S.U. Lee, D. Sohn // Chem. Commun. – 2013. – V.49 (40). – P. 4519–4521.74.Abdullayev, E. Enlargement of halloysite clay nanotube lumen by selectiveetching of aluminum oxide / E. Abdullayev, A. Joshi, W.B. Wei, Y.F. Zhao, Y. Lvov //ACS Nano. – 2012. – V.6 (8). – P. 7216–7226.75.Lu, D. Direct measurements of the Young'smodulus of a single halloysitenanotube using a transmission electron microscope with a bending stage / D. Lu, H.B.Chen, J.S.
Wu, C.M. Chan // J. Nanosci. Nanotechnol. – 2010. – V.11 (9). – P. 7789–7793(7785).76.Lecouvet, B. Elastic modulus of halloysite nanotubes / B. Lecouvet, J. Horion, C.D'Haese, C. Bailly, B. Nysten // Nanotechnology. – 2013a. – V.24 (10).77.Zhang, A.B. Effects of acid treatment on the physico-chemical and porecharacteristics of halloysite / A.B. Zhang, L. Pan, H.Y. Zhang, S.T. Liu, Y. Ye, M.S.Xia, X.G. Chen // Colloids Surf.
– 2012b. – V.396. – P. 182–188.78.Manevitch, O.L. Elastic properties of a single lamella of montmorillonite bymolecular dynamics simulation / O.L. Manevitch, G.C. Rutledge // J. Phys. Chem. –2004. – V.108 (4). – P. 1428–1435.79.Liu, M., Recent advance in research on halloysite nanotubes–polymernanocomposite / M. Liu, Z. Jia, D. Jia, C. Zhou // Prog. Polym. Sci. – 2014. – V.39 (8).– P. 1498–1525.80.Guimaraes, L. Structural, electronic, and mechanical properties of single-walledhalloysite nanotube models / L. Guimaraes, A.N. Enyashin, G.
Seifert, H.A. Duarte // J.Phys. Chem. – 2010. – V.114 (26). – P. 11358–11363.81.Hendricks, S.B. Structures of kaolin and talc-pyrophyllite hydrates and theirbearing on water sorption of the clays //S.B. Hendricks, M.E. Jefferson // Am. Mineral.– 1938. – V.23 (12). – P. 863–875.12082.Lipsicas, M. Static and dynamic structure of water in hydrated kaolinites. II. Thedynamic structure / M. Lipsicas, C. Straley, P.M. Costanzo, Jr.
R.F. Giese // J. ColloidInterface Sci. – 1985. – V.107 (1). – P. 221–230.83.Smirnov, K.S. A molecular dynamics study of structure and short-time dynamicsof water in kaolinite / K.S. Smirnov, D.J. Bougeard // Phys. Chem. – 1999. – V.103(25). – P. 5266–5273.84.Hughes, I. Mineral changes of halloysite on drying. New Zealand Pottery andCeramics Research Association / I. Hughes, N.Z. Pottery // J. Sci. – 1966.
– V.9. – P.103–113.85.Brindley, G.W. Randomness in the structures of kaolinitic clay minerals / G.W.Brindley, K. Robinson // Trans. Faraday Soc. – 1946. – V.42. – P. 198–205.86.Brindley, G.W. X-Ray studies of halloysite and metahalloysite. 3. The effect oftemperature and pressure on the halloysite–metahalloysite transition / G.W. Brindley,K. Robinson, J. Goodyear // Am.
Mineral. – 1949. – V.34 (3-4). – P. 423–428.87.Ece, Ö.I. Clay mineralogy and chemistry of halloysite and alunite deposits in theTurplu area, Balikesir, Turke / Ö.I Ece, P.A. Schroeder // Clay Clay Miner. – 2007. –V.55 (1). – P. 18–35.88.Tan, D. Natural halloysite nanotubes asmesoporous carriers for the loading ofibuprofen / D. Tan, P.
Yuan, F. Annabi-Bergaya, H. Yu, D. Liu, H. Liu, H. He //MicroporousMesoporous Mater. – 2013. – V.179. – P. 89–98.89.Veerabadran, N.G. Clay nanotubes for encapsulation and sustained release ofdrugs / N.G. Veerabadran, R.R. Price, Y.M. Lvov // Nano. – 2007. – V.2 (2). – P. 115–120.90.Abdullayev, E. Halloysite tubes as nanocontainers for anticorrosion coating withbenzotriazole / E. Abdullayev, R.
Price, D. Shchukin, Y. Lvov // ACS Appl. Mater.Interfaces. – 2009. – V.1 (7). – P. 1437–1443.91.Lvov, Y. Thin film nanofabrication via layer-by-layer adsorption of tubulehalloysite, spherical silica, proteins and polycations / Y. Lvov, R. Price, B. Gaber, I.Ichinose // Colloids Surf. – 2002. – V.198. – P. 375–382.12192.Shamsi, M.H. The first biopolymer-wrapped non-carbon nanotubes / M.H.Shamsi, K.E. Geckeler // Nanotechnology. – 2008. – V.19 (7).93.Chang, P.R.
Amy lose wrapped halloysite nanotubes. Carbohydr / P.R. Chang,Y.F Xie., D.L. Wu, X.F. Ma // Polym. – 2011. – V.84 (4). – P. 1426–1429.94.Joo, Y. Aggregation and stabilization of carboxylic acid functionalized halloysitenanotubes (HNT–COOH) / Y. Joo, Y.
Jeon, S.U. Lee, J.H. Sim, J. Ryu, S. Lee, H. Lee,D. Sohn // J. Phys. Chem. – 2012. – V.16 (34). – P. 18230–18235.95.Yah, W.O. Selective modification of halloysite lumen with octadecylphosphonicacid: new inorganic tubular micelle / W.O. Yah, A. Takahara, Y.M. Lvov // J. Am.Chem. Soc.
– 2012a. – V.134 (3). – P. 1853–1859.96.Yah, W.O. Biomimetic dopamine derivative for selective polymer modificationof halloysite nanotube lumen / W.O. Yah, H. Xu, H. Soejima, W. Ma, Y. Lvov, A.Takahara // J. Am. Chem. Soc. – 2012b. – V.134 (29). – P. 12134–12137.97.Tonlé, I.K.
Nanohybrid materials from the grafting of imidazolium cations on theinterlayer surfaces of kaolinite. Application as electrode modifier / I.K. Tonlé, S.Letaief., E. Ngameni, C. Detellier // J. Mater. Chem. – 2009. – V.19 (33). – P. 5996–6003.98.Yang, S. Effect of reaction temperature on grafting of γ-aminopropyltriethoxysilane (APTES) onto kaolinite / S. Yang, P. Yuan, H. He, Z. Qin, Q. Zhou, J.Zhu, D. Liu // Appl.
Clay Sci. – 2009. – V.62-63. – P. 8–14.99.Tunney, J.J. Chemicallymodified kaolinite. Grafting of methoxy groups on theinterlamellar aluminol surface of kaolinite / J.J. Tunney, C. Detellier // J.Mater. Chem. –1996. – V.6 (10). – P. 1679–1685.100.Letaief, S. Functionalized nanohybrid materials obtained from the interlayergrafting of aminoalcohols on kaolinite / S. Letaief, C. Detellier // Chem. Commun.
–2007. – V.25. – P. 2613–2615.101.Tonlé, I.K. Nanohybrid kaolinite-basedmaterials obtained from the interlayergrafting of 3-aminopropyltriethoxysilane and their potential use as electrochemicalsensors / I.K. Tonlé, T. Diaco, E. Ngameni, C. Detellier // Chem. Mater. – 2007. – V.19(26). – P. 6629–6636.122102.De Faria, E.H. Hybrid materials prepared by interlayer functionalization ofkaolinite with pyridine-carboxylic acids / E.H. de Faria, O.J. Lima, K.J. Ciuffi, E.J.Nassar, M.A. Vicente, R. Trujillano, P.S.
Calefi // J. Colloid Interface Sci. – 2009. –V.335 (2). – P. 210–215.103.DeFaria,E.H.Novelreactiveamino-compound:tris(hydroxymethyl)aminomethane covalently grafted on kaolinite / E.H. de Faria, K.J.Ciuffi, E.J. Nassar, M.A. Vicente, R. Trujillano, P.S. Calefi // Appl. Clay Sci. – 2010. –V.48 (3). – P. 516–521.104.De Faria, E.H. New highly luminescent hybrid materials: terbium pyridine–picolinate covalently grafted on kaolinite / E.H.