Диссертация (1173032), страница 17
Текст из файла (страница 17)
Николаев, В.М. Бабаев. –Казань, 2014.18.Скворцова, Н.К. Новый справочник химика и технолога. Основные свойстванеорганических, органических и элементоорганических соединений / Н.К.Скворцова // - СПб: "Мир и Семья", 2012. - 1280 с.19.Навалихина, М.Д. Гетерогенные катализаторы гидрирования / М.Д.Навалихина, О.В. Крылов // Успехи химии.
– 1998. – Т. 67. – С. 656-687.20.Yen, C.H. Hydrogenation of bisphenol A–Using a mesoporous silica based nanoruthenium catalyst Ru/MCM-41 and water as the solvent / C.H. Yen, H.W. Lin, C.S.Tan // Catalysis today. – 2011. – Т. 174. – №. 1. – С. 121-126.21.Cui, X. Highly selective hydrogenation of arenes using nanostructured rutheniumcatalysts modified with a carbon–nitrogen matrix / X. Gui, A.E. Surkus, К.
Junge, С.Topf, J Radnik, C. Kreyenschulte, M. Beller // Nature Commun. – 2016. 7, 11326.22.Maximov, A. Ruthenium Nanoparticles Stabilized in Cross-Linked DendrimerMatrices: Hydrogenation of Phenols in Aqueous Media / A. Zolotukhina, V. Murzin, E.Karakhanov, E Rosenberg // ChemCatChem.
- 2015. – V. 7. – P. 1197-1210.23.Karakhanov, E. Thermo-responsive Ruthenium Dendrimer-based Catalysts forHydrogenation of the Aromatic Compounds and Phenols / E. Karakhanov, A. Maximov,114A. Zolotukhina, Y. Kardasheva, M. Talanova // J. Inorg. Organomet. Polym. Mater. –2016. – V. 26. – P. 1264-1279.24.Keypour, H. Hydrogenation of benzene in gasoline fuel over nanoparticles (Ni,Pt, Pd, Ru and Rh) supported fullerene: Comparison study / H.
Keypour, M. Noroozi //Journal of Applied Chemistry.25.- 2016. – V.10. – P. 31-42.Zhang, Y. Palladium nanoparticles deposited on silanized halloysite nanotubes:synthesis, characterization and enhanced catalytic property / Y. Zhang, X. He, J.Ouyang, H. Yang // Sci Rep. – 2013. – V.3. – P. 2948.26.Yang, T. Synthesis and Immobilization of Pt Nanoparticles on Amino-Functionalized Halloysite Nanotubes Toward Highly Active Catalysts / T. Yang, M.Du, M. Zhang, H. Zhu, P. Wang, M.
Zou // Nanomater. Nanotechnol. – 2015. - V.5. – P.4.27.Berthier, P. Analyse de l'halloysite / P. Berthier // Ann. Chim. Phys. – 1826. –V.32. – P. 332–335.28.Bates, T.F. Morphology and structure of endellite and halloysite / F.A.Hildebrand, A. Swineford // Am. Mineral. – 1950. – V.35 (7-8). – P. 463–484.29.Singh, B. Why does halloysite roll? — A new model / B. Singh // Clay and ClayMiner. – 1996. – V.44 (2). – P. 191–196.30.Yuan, P. Properties and applications of halloysite nanotubes: recent researchadvances and future prospects / P.
Yuan, D. Tan, F. Annabi-Bergaya // Appl. Clay Sci. 2015. – P. 75–93.31.Joussein, E. Halloysite clay minerals: a review / E. Joussein, S. Petit, J.Churchman, B. Theng, D. Righi, B. Delvaux // Clay Miner. – 2005. – V.40 (4). – P.383–426.32.Pasbakhsh, P. Characterisation of properties of various halloysites relevant totheir use as nanotubes and microfibre fillers / P. Pasbakhsh, G.J. Churchman, J.L.Keeling // Appl.
Clay Sci. – 2013. – V.74. – P. 47–57.11533.Yuan, P. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane / P. Yuan, P.D. Southon, Z. Liu, M.E.R. Green, J.M. Hook,S.J. Antill, S.J. Kepert // J. Phys. Chem. – 2008. – V.112 (40). – P.
15742–15751.34.Yuan, P., From platy kaolinite to aluminosilicate nanoroll via one-stepdelamination of kaolinite: effect of the temperature of intercalation / P. Yuan, D. Tan, F.Annabi-Bergaya, W. Yan, D. Liu, Z. Liu // Appl. Clay Sci. - 2013. – V.83–84. – P. 68–76.35.Lvov, Y.M. Halloysite clay nanotubes for controlled release of protective agents /Y.M. Lvov, D.G.
Shchukin, H. Mohwald, R.R. Price // ACS Nano. - 2008. – V.2 (5). P. 814–820.36.Churchman, G.J. Characteristics of fine pores in some halloysites / G.J.Churchman, T.J. Davy, L.A.G. Aylmore, R.J. Gilkes, P.G. Self // Clay Miner. – 1995. –V.30 (2). – P. 89–98.37.Yiu, H.H.P. Size selective protein adsorption on thiol-functionalised SBA-15mesoporous molecular sieve / H.H.P. Yiu, C.H. Botting, N.P. Botting, P.A. Wright //Phys.
Chem. Chem. Phys. – 2001. – V.3 (15). – P. 2983–2985.38.Vergaro, V. Cytocompatibility and uptake of halloysite clay nanotubes / V.Vergaro, E. Abdullayev, Y.M. Lvov, A. Zeitoun, R. Cingolani, R. Rinaldi, S. Leporatti// Biomacromolecules, - 2010. – V.11 (3). – P. 820–826.39.Price, R.R.
In-vitro release characteristics of tetracycline HCl, khellin andnicotinamide adenine dineculeotide from halloysite; a cylindrical mineral / R.R. Price,B.P. Gaber, Y. Lvov // J. Microencapsul. – 2001. – V.18 (6). – P. 713–722.40.Du, M.L. Thermal stability and flame retardant effects of halloysite nanotubes onpoly(propylene) / M.L. Du, B.C. Guo, D.M. Jia // Eur. Polym. – 2006. – V.42 (6). – P.1362–1369.41.Gardolinski, J.E.F.C. Grafted organic derivatives of kaolinite: II.
Intercalation ofprimary n-alkylamines and delamination / J.E.F.C. Gardolinski, G. Lagaly // ClayMiner. - 2005. – V.40 (4). – P. 547–556.11642.Kuroda, Y. One-step exfoliation of kaolinites and their transformation intonanoscrolls / Y. Kuroda, K. Ito, K. Itabashi, K. Kuroda. // Langmuir. – 2011. – V.27 (5).– P. 2028–2035.43.Yuan, P.
Changes in structure, morphology, porosity, and surface activity ofmesoporous halloysite nanotubes under heating / P. Yuan, D.Y. Tan, F. AnnabiBergaya, W.C. Yan, M.D. Fan, D. Liu, H.P. He // Clay Clay Miner. – 2012a. – V.60 (6).– P. 561–573.44.White, R.D. The stability of halloysite nanotubes in acidic and alkaline aqueoussuspensions / R.D. White, D.V. Bavykin, F.C. Walsh // Nanotechnology. – 2012a. –V.23 (6).45.Bailey, S.W. Halloysite - a critical assessment / S.W.
Bailey // Sci. Geol. Mem. –1990. – V.86. – P. 89–98.46.Singh, B. Experimental transformation of kaolinite to halloysite / B. Singh, I.D.R.Mackinnon // Clay Clay Miner. – 1996. – V.44 (6). – P. 825–834.47.Honjo, G. A study of clay minerals by means of single crystal electron diffractiondiagrams—the structure of tubular kaolin. / G.
Honjo, N. Kitamura, K. Mihama // ClayMiner. – 1954. – V.82. – P. 133–141.48.Singh, B. An electron-optical investigation of the alteration of kaolinite tohalloysite / B. Singh, R.J. Gilkes // Clay Clay Miner. – 1992. – V.40 (2). – P. 212–229.49.Matusik, J. The effect of structural order on nanotubes derived from kaolin-groupminerals / J. Matusik, A. Gawel, E.
Bielanska, W. Osuch, K. Bahranowski // Clay ClayMiner. – 2009. – V.57 (4). – P. 452–464.50.Mitra, G.B. Spiral structure of 7 Å halloysite: mathematical models. / G.B. Mitra// Clay Clay Miner. – 2013. – V.61 (6). – P. 499–507.51.Kohyama, N. Observation of hydrated form of tubular halloysite by an electron-microscope equipped with an environmental cell / N. Kohyama, K. Fukushima, A.Fukami // Clay Clay Miner. – 1978. – V.26 (1). – P. 25–40.52.Liu, M.X.
Properties of halloysite nanotube–epoxy resin hybrids and theinterfacial reactions in the systems / M.X. Liu, B.C. Guo, M.L. Du, X.J. Cai, D.M. Jia //Nanotechnology. – 2007. – V.18 (45).11753.Forsgren, J. A ceramic drug delivery vehicle for oral administration of highlypotent opioids / J. Forsgren, E. Jamstorp, S. Bredenberg, H. Engqvist, M. Stromme // J.Pharm. Sci.
U.S. – 2010. – V.99 (1). – P. 219–226.54.Brindley, G.W. The kaoiinite–mullite reaction series: I, A survey of outstandingproblems / G.W. Brindley, M. Nakahira // J. Am. Ceram. Soc. – 1959. – V.42 (7). – P.311–314.55.Brown, I.W.M. Outstanding problems in the kaolinite–mullite reaction sequenceinvestigated by 29Si and 27Al solid-state Nuclear Magnetic Resonance: 11, hightemperature transformations of metakaolinite / I.W.M.
Brown, K.J.D. MacKenzie, M.E.Bowden, R.H. Meinhold // J. Am. Ceram. Soc. – 1985. – V.68 (6). – P. 298–301.56.MacKenzie, K.J.D. Outstanding problems in the kaolinite–mullite reactionsequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance: I,Metakaolinite / K.J.D. MacKenzie, I.W.M. Brown, R.H. Meinhold, M.E. Bowden // J.Am. Ceram. Soc. – 1985.
– V.68 (6). – P. 293–297.57.Rocha, J. 29Si and 27Al magic-angle-spinning NMR studies of the thermaltransformation of kaolinite / J. Rocha, J. Klinowski // Phys. Chem. Miner. – 1990. –V.17 (2). – P. 179–186.58.Massiot, D. 27Al and 29Si MAS NMR study of kaolinite thermal decompositionby controlled rate thermal analysis / D. Massiot, P. Dion, J.F.
Alcover, F. Bergaya // J.Am. Ceram. Soc. – 1995. – V.78 (11). – P. 2940–2944.59.Bergaya, F. TEM study of kaolinite thermal decomposition by controlled-ratethermal analysis / F. Beregaya, P. Dion, J.F. Alcover, C. Clinard, D.J. Tchoubar //Mater.
– 1996. – V.31 (19). – P. 5069–5075.60.Lee, S. Phase transformation sequence from kaolinite to mullite investigated byan energy-filtering transmission electron microscope / S. Lee, Y.J. Kim, H.S. Moon // J.Am. Ceram. Soc. – 1999. – V.82 (10). – P. 2841–2848.61.Vassallo, A.M. Infrared-emission spectroscopy of coal minerals and their thermaltransformations / A.M. Vassallo, P.A. Coleclarke, L.S.K.