Главная » Просмотр файлов » Лекции ТММ 1

Лекции ТММ 1 (1172676), страница 44

Файл №1172676 Лекции ТММ 1 (Лекции Тарабарин) 44 страницаЛекции ТММ 1 (1172676) страница 442020-05-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 44)

Матрицы перехода их системы Oi в систему Oi-1 можно записать так

,

где - матрица поворота вокруг оси xi на угол -i ,

- матрица переноса вдоль оси xi на -ai ,

- матрица переноса вдоль оси zi -1на -si ,

- матрица поворота вокруг оси zi-1 на угол -i .

В этих матрицах переменные si и i соответствуют относительным перемещениям звеньев в кинематических парах и являются обобщенными координатами манипулятора, определяющими конфигурацию механизма в рассматриваемом положении. Переменные ai и i определяются конструктивным исполнением звеньев манипулятора, в процессе движения они остаются неизменными.

Положение некоторой произвольной точки М в системе координат звена i определяется вектором rMi , а в системе координат звена (i-1) – вектором rMi-1. Эти радиусы связаны между собой через матрицу преобразования координат Мi

следующим уравнением


,

где

- матрица перехода из i-ой системы координат в ( i - 1 ) -ю.

Рассмотрим шестиподвижный манипулятор в исходном или начальном положении (рис.20.2). За начальное положение принимается такое, в котором все относительные обобщенные координаты равны нулю. Переход из системы координат любого i–го звена к неподвижной или базовой системе записывается в виде

или ,

где - матрица преобразования координат i–ой системы в координаты базовой системы координат.

y3

x3

C

2 C y2 z3

z0 x1 B z2

z1 x2

y1 x4 E y5

y4 z5

B,C E x5

D z4

y6

1 3 E M

A K x6 z6

4 5

т.М

y0 rM0 6

x0 0

Рис.20.2

Для схемы, изображенной на рис.20.2, радиус rM6 = 0, а радиус rM0 определится по формуле

,

то есть положение выходного звена манипулятора определяется матрицей Тn. Элементы этой матрицы определяют положение центра схвата точки М и ориентацию его в пространстве. Четвертый столбец определяет, декартовы координаты точки М (проекции вектора rM0 на оси координат). Третий столбец содержит направляющие косинусы оси zn системы координат, связанной со схватом, или вектора подхода , который характеризует направление губок схвата (рис.20.3). Второй столбец определяет направление оси yn или вектора ориентации , который проходит через центр схвата по оси перпендикулярной рабочим поверхностям его губок. В первом столбце содержатся направляющие косинусы оси xn или вектора . Углом подхода схвата называется угол между вектором подхода и базовым вектором

,

где - орт вектора неподвижной или базовой системы координат. С учетом сказанного, матрица Tn может быть представлена в следующем виде

xn

a

zn

т.М

yn

Рис.20.3

В результате матричных преобразований получаем радиус-вектор точки М схвата в функции обобщенных координат. Обычно, за обобщенные координаты принимают линейные и угловые перемещения в кинематических парах или на выходных валах приводов манипулятора. В механизме с n подвижностями в общем виде функцию положения схвата можно записать так

где q1,q2,…qn – обобщенные координаты манипулятора.




При кинематическом анализе манипулятора в прямой задаче необходимо определить линейные и угловые скорости и ускорения схвата при заданных угловых и линейных обобщенных скоростях и ускорениях (обычно относительных скоростях и ускорениях в кинематических парах механизма). В обратной задаче по заданному закону изменения скоростей и ускорений схвата определяются законы изменения скоростей и ускорений в КП или на выходных звеньях приводов. Решение прямой задачи кинематики для точки М схвата можно получить продифференцировав четвертый столбец матрицы Тn по времени

Угловую скорость и угловое ускорение схвата можно определить векторным суммированием относительных угловых скоростей во вращательных КП механизма. Так как вектора угловых скоростей, при данном выборе ориентации осей координат, совпадают с осью z, то угловая скорость схвата

где орт оси z системы координат, расположенной в центре КП, соединяющей звено i и звено i-1, m – число вращательных КП в механизме.

Дифференцируя это выражение по времени, получим формулу для определения углового ускорения схвата


Динамика манипуляторов промышленных роботов.

Силовой расчет манипулятора.

Из большого разнообразия задач динамики манипуляторов рассмотрим две: силовой расчет и расчет быстродействия ПР. При силовом расчете манипуляторов решается задачи по определению внешних силовых управляющих воздействий, обеспечивающих требуемый закон движения механизма, и по расчету реакций в кинематических парах. Первую часть часто называют задачей синтеза управления . При силовом расчете обычно применяется метод кинетостатики, основанный на принципе Д’Аламбера. По этому методу к внешним силам и моментам, приложенным к звеньям механизма, добавляются расчетные силы инерции, которые обеспечивают силовую уравновешенность системы и позволяют рассматривать подвижную систему в квазистатическом равновесии, то есть, как условно неподвижную. Силовой расчет выполняется при заданной полезной нагрузке , известных законах движения звеньев и (из предварительного кинематического расчета), известных инерционных характеристиках звеньев: массах звеньев mi и их моментах инерции Isi. По этим данным определяются главные вектора и главные моменты сил инерции для каждого из звеньев механизма. Для открытой кинематической цепи решение начинаем с выходного звена – схвата. Отброшенные связи звена n со звеном n -1 и выходным валом привода звена n заменяем реакциями и и составляем кинетостатические векторные уравнения равновесия сил и моментов для звена n (Рис.20.4):

где - вектор момента в кинематической паре ( проекция этого вектора на ось z является движущим моментом привода в КП , то есть ).

yn-1

_

Mn,n-1 _

Fn,n-1 _

D _ Fиn _

n-1 _ Mиn Fn

Mд(n,n-1) sn _

_ Fиo

zn-1 Gn т.М

_ xn-1

n Go

Рис. 20.4

Проецируя векторные уравнения на оси координат, получим систему шести алгебраических уравнений откуда определим шесть неизвестных

Далее рассматривается равновесие звена n-1 . При этом в месте его присоединения к звену n прикладываются реакции со стороны звена n

,

равные по величине и противоположные по направлению реакциям, определенным на предыдущем этапе расчета. Так последовательно составляются уравнения силового равновесия для всех n звеньев механизма. Из решения полученной системы 6n уравнений определяются реакции в кинематических парах, движущие силы и моменты.

Расчет быстродействия промышленного робота.

Время выполнения роботом цикла перемещений детали во многом определяет производительность всего роботизированного комплекса. Поэтому требования к быстродействию робота обычно достаточно высокие. Время выполнения роботом технологической операции обусловлено законами изменения внешних сил (движущих и сопротивления) и инертностью звеньев механизма. Закон изменения управляющих сил зависит от типа используемого привода и от вида системы управления. Существуют роботы с гидравлическими, пневматическими, электрическими и комбинированными приводами. В них применяются цикловые, позиционные или контурные системы управления. Рассмотрим расчет быстродействия одного из приводов промышленного робота с цикловой системой управления. При цикловой системе управления относительные перемещения звеньев ограничиваются передвижными упорами и концевыми выключателями.

На рис. 20.5 изображена кинематическая схема трехподвижного манипулятора ПР (1,2,3 – подвижные звенья, 0 – неподвижное звено). Здесь же приведена циклограмма настройки командоаппарата (сплошные линии) и циклограмма работы ПР (пунктирные линии). Общее время рабочего цикла Тц состоит из времени выстоя в заданных положениях ( на циклограмме выстой показан прямыми параллельными горизонтальной оси t ) и времени относительных перемещений звеньев из одного заданного положения в другое tпх и обратно tох ( наклоные прямые на диаграммах ). Время выстоя обычно задано условиями технологического процесса. Время выполнения роботом движений определяется динамическими характеристиками приводов и манипулятора – движущими силами и силами сопротивления, массами и моментами инерции звеньев.

2 S32 hд 3

т.М

H21

1

Характеристики

Тип файла
Документ
Размер
4,51 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6529
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее